Matching Items (19)

133605-Thumbnail Image.png

Nanostructured Faujasite Zeolites for Carbon Dioxide Adsorption: Adsorption Equilibrium and Dynamics Modeling

Description

Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s grou

Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s group (School of Molecular Sciences, Arizona State University) synthesized the nanostructured faujasite (NaX). The zeolite was characterized using Scanning Electron Microscopy (SEM) and the physisorption properties were determined using ASAP 2020. ASAP 2020 tests of the nano-zeolite pellets at 77K in a liquid N2 bath determined the BET surface area of 547.1 m2/mol, T-plot micropore volume of 0.2257 cm3/g, and an adsorption average pore width of 5.9 Å. The adsorption isotherm (equilibrium) of CH4, N2, and CO2 were measured at 25ºC. Adsorption isotherm experiments concluded that the linear isotherm was the best fit for N2, and CH4 and the Sips isotherm was a better fit than the Langmuir and Freundlich isotherm for CO2. At 25ºC and 1 atm the zeolite capacity for CO2 is 4.3339 mmol/g, 0.1948 mmol/g for CH4, and 0.3534 mmol/g for N2. The zeolite has a higher CO2 capacity than the conventional NaX zeolite. Breakthrough experiments were performed in a fixed bed 22in, 0.5 in packing height and width at 1 atm and 298 K with nano-zeolite pellets. The gas chromatographer tested and recorded the data every two minutes with a flow rate of 10 cm3/min for N2 and 10 cm3/min CO2. Breakthrough simulations of the zeolite in a fixed bed adsorber column were conducted on MATLAB utilizing varying pressures, flow rates, and fed ratios of various CO2, N2 and CH4. Simulations using ideal adsorbed solution theory (IAST) calculations determined that the selectivity of CO2 in flue gas (15% CO2 + 85% N2) is 571.79 at 1 MPa, significantly higher than commercial zeolites and literature. The nanostructured faujasite zeolite appears to be a very promising adsorbent for CO2/N2 capture from flue gas and the separation of CO2/N2.

Contributors

Agent

Created

Date Created
  • 2018-05

148174-Thumbnail Image.png

Arsenic Sorption by Iron Impregnated Biochar

Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

Contributors

Agent

Created

Date Created
  • 2021-05

137240-Thumbnail Image.png

Styrene Oxide Adsorption on Commercial Resins

Description

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.

Contributors

Agent

Created

Date Created
  • 2014-05

Strategies for Recovery of Biosynthetic Styrene

Description

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.

Contributors

Agent

Created

Date Created
  • 2013-05

158079-Thumbnail Image.png

Experimental and Simulation Study on Novel Adsorbents for Carbon Capture, Oxygen Sorption, and Methane Recovery

Description

Global warming resulted from greenhouse gases emission has received widespread attention. Meanwhile, it is required to explore renewable and environmentally friendly energy sources due to the severe pollution of the

Global warming resulted from greenhouse gases emission has received widespread attention. Meanwhile, it is required to explore renewable and environmentally friendly energy sources due to the severe pollution of the environment caused by fossil fuel combustion. In order to realize a substantial adsorption process to resolve the environmental issues, the development of new adsorbents with improved properties has become the most critical issue. This dissertation presents the work of four individual but related studies on systematic characterization and process simulations of novel adsorbents with superior adsorption properties.

A perovskite oxide material, La0.1Sr0.9Co0.9Fe0.1O3-δ (LSCF1991), was investigated first for high-temperature air separation. The oxygen sorption/desorption behavior of LSCF1991 was studied by thermogravimetric analysis (TGA) and fixed-bed breakthrough experiments. A parametric study was performed to design and optimize the operating parameters of the high-temperature air separation process by pressure swing adsorption (PSA). The results have shown great potential for applying LSCF1991 to the high-temperature air separation due to its excellent separation performance and low energy requirement.

Research on using nanostructured zeolite NaX (NZ) as adsorbents for CO2 capture was subsequently conducted. The CO2/N2 adsorption characterizations indicated that the NZ samples lead to enhanced adsorption properties compared with the commercial zeolites (MZ). From the two-bed six-step PSA simulation, NZ saved around 30% energy over MZ for CO2 capture and recovery while achieving a higher CO2 purity and productivity.

A unique screening method was developed for efficient evaluation of adsorbents for PSA processes. In the case study, 47 novel adsorbents have been screened for coal bed methane (CBM) recovery. The adsorbents went through scoring-based prescreening, PSA simulation, and optimization. The process performance indicators were correlated with the adsorption selectivity and capacities, which provides new insights for predicting the PSA performance.

A new medium-temperature oxygen sorbent, YBaCo4O7+δ (YBC114), was investigated as an oxygen pumping material to facilitate solar thermochemical fuel production. The oxygen uptake and release attributes of YBC114 were studied by both TGA and a small-scale evacuation test. The study proved that the particle size has a significant effect on the oxygen pumping behavior of YBC114, especially for the uptake kinetics.

Contributors

Agent

Created

Date Created
  • 2020

158198-Thumbnail Image.png

Adsorption of Perfluoroalkyl Substances from Groundwater Using Pilot and Lab Scale Columns

Description

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that are detected ubiquitously in the aquatic environment, biota, and humans. Human exposure and adverse health of PFAS through

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that are detected ubiquitously in the aquatic environment, biota, and humans. Human exposure and adverse health of PFAS through consuming impacted drinking water is getting regulatory attention. Adsorption using granular activated carbon (GAC) and ion exchange resin (IX) has proved to be efficient in removing PFAS from water. There is a need to study the effectiveness of commercially available sorbents in PFAS removal at the pilot-scale with real PFAS contaminated water, which would aid in efficient full-scale plant design. Additionally, there is also a need to have validated bench-scale testing techniques to aid municipalities and researchers in selecting or comparing adsorbents to remove PFAS. Rapid Small-Scale Column Tests (RSSCTs) are bench-scale testing to assess media performance and operational life to remove trace organics but have not been validated for PFAS. Different design considerations exist for RSSCTs, which rely upon either proportional diffusivity (PD) or constant diffusivity (CD) dimensionless scaling relationships.

This thesis aims to validate the use of RSSCTs to simulate PFAS breakthrough in pilot columns. First, a pilot-scale study using two GACs and an IX was conducted for five months at a wellsite in central Arizona. PFAS adsorption capacity was greatest for a commercial IX, and then two GAC sources exhibited similar performance. Second, RSSCTs scaled using PD or CD relationships, simulated the pilot columns, were designed and performed. For IX and the two types of GAC, the CD–RSSCTs simulated the PFAS breakthrough concentration, shape, and order of C8 to C4 compounds observed pilot columns better than the PD-RSSCTs. Finally, PFAS breakthrough and adsorption capacities for PD- and CD-RSSCTs were performed on multiple groundwaters (GWs) from across Arizona to assess the treatability of PFAS chain length and functional head-group moieties. PFAS breakthrough in GAC and IX was dictated by chain length (C4>C6>C8) and functional group (PFCAs>PFSAs) of the compound. Shorter-chain PFAS broke through earlier than the longer chain, and removal trends were related to the hydrophobicity of PFAS. Overall, single-use IX performed superior to any of the evaluated GACs across a range of water chemistries in Arizona GWs.

Contributors

Agent

Created

Date Created
  • 2020

151601-Thumbnail Image.png

Continuous in-situ removal of butanol from clostridium acetobutylicum fermentations via expanded-bed adsorption

Description

The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the

The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current automotive infrastructure. Additionally, butanol offers the same environmentally friendly effects as ethanol, but possess a 23% higher energy density. Clostridium acetobutylicum is an anaerobic bacterium that can ferment renewable biomass-derived sugars into butanol. However, this fermentation becomes limited by relatively low butanol concentrations (1.3% w/v), making this process uneconomical. To economically produce butanol, the in-situ product removal (ISPR) strategy is employed to the butanol fermentation. ISPR entails the removal of butanol as it is produced, effectively avoiding the toxicity limit and allowing for increased overall butanol production. This thesis explores the application of ISPR through integration of expanded-bed adsorption (EBA) with the C. acetobutylicum butanol fermentations. The goal is to enhance volumetric productivity and to develop a semi-continuous biofuel production process. The hydrophobic polymer resin adsorbent Dowex Optipore L-493 was characterized in cell-free studies to determine the impact of adsorbent mass and circulation rate on butanol loading capacity and removal rate. Additionally, the EBA column was optimized to use a superficial velocity of 9.5 cm/min and a resin fraction of 50 g/L. When EBA was applied to a fed-batch butanol fermentation performed under optimal operating conditions, a total of 25.5 g butanol was produced in 120 h, corresponding to an average yield on glucose of 18.6%. At this level, integration of EBA for in situ butanol recovered enabled the production of 33% more butanol than the control fermentation. These results are very promising for the production of butanol as a biofuel. Future work will entail the optimization of the fed-batch process for higher glucose utilization and development of a reliable butanol recovery system from the resin.

Contributors

Agent

Created

Date Created
  • 2013

154169-Thumbnail Image.png

Comparative analysis of adsorptive media treatment for arsenic at SRP groundwater wells

Description

Arsenic (As) is a naturally occurring element that poses a health risk when continually consumed at levels exceeding the Environmental Protection Agencies (EPA) maximum contaminant level (MCL) of 10 ppb.

Arsenic (As) is a naturally occurring element that poses a health risk when continually consumed at levels exceeding the Environmental Protection Agencies (EPA) maximum contaminant level (MCL) of 10 ppb. With the Arizona Department of Water Resources considering reliance on other sources of water other than just solely surface water, groundwater proves a reliable, supplemental source. The Salt River Project (SRP) wants to effectively treat their noncompliance groundwater sources to meet EPA compliance. Rapid small-scale column tests (RSSCTs) of two SRP controlled groundwater wells along the Eastern Canal and Consolidated Canal were designed to assist SRP in selection and future design of full-scale packed bed adsorbent media. Main concerns for column choice is effectiveness, design space at groundwater wells, and simplicity. Two adsorbent media types were tested for effective treatment of As to below the MCL: a synthetic iron oxide, Bayoxide E33, and a strong base anion exchange resin, SBG-1. Both media have high affinity toward As and prove effective at treating As from these groundwater sources. Bayoxide E33 RSSCT performance indicated that As treatment lasted to near 60,000 bed volumes (BV) in both water sources and still showed As adsorption extending past this operation ranging from several months to a year. SBG-1 RSSCT performance indicated As, treatment lasted to 500 BV, with the added benefit of being regenerated. At 5%, 13%, and 25% brine regeneration concentrations, regeneration showed that 5% brine is effective, yet would complicate overall design and footprint. Bayoxide E33 was selected as the best adsorbent media for SRP use in full-scale columns at groundwater wells due to its simplistic design and high efficiency.

Contributors

Agent

Created

Date Created
  • 2015

154071-Thumbnail Image.png

Development of environmentally responsive multifunctional microgel particles: synthesis, characterization and applications

Description

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.

Contributors

Agent

Created

Date Created
  • 2015

153163-Thumbnail Image.png

Improving yields and productivity of microbe-catalyzed production of targeted bio-molecules using in-situ adsorption

Description

With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative,

With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and "eco-friendly". Escherichia coli has recently been engineered to produce the aromatic chemicals (S)-styrene oxide and phenol directly from renewable glucose. Several factors, however, limit the viability of this approach, including low titers caused by product inhibition and/or low metabolic flux through the engineered pathways. This thesis focuses on addressing these concerns using magnetic mesoporous carbon powders as adsorbents for continuous, in-situ product removal as a means to alleviate such limitations. Using process engineering as a means to troubleshoot metabolic pathways by continuously removing products, increased yields are achieved from both pathways. By performing case studies in product toxicity and reaction equilibrium it was concluded that each step of a metabolic pathway can be optimized by the strategic use of in-situ adsorption as a process engineering tool.

Contributors

Agent

Created

Date Created
  • 2014