Matching Items (3)
Filtering by

Clear all filters

150434-Thumbnail Image.png
Description
Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this canonical collisional orogen is poorly constrained, with estimates ranging from Late Cretaceous to Early Oligocene. This study focuses on the

Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this canonical collisional orogen is poorly constrained, with estimates ranging from Late Cretaceous to Early Oligocene. This study focuses on the Ladakh region in the northwestern Indian Himalaya, where early workers suggested that sedimentary deposits of the Indus Basin molasse sequence, located in the suture zone, preserve a record of the early evolution of orogenesis, including initial collision between India and Eurasia. Recent studies have challenged this interpretation, but resolution of the issue has been hampered by poor accessibility, paucity of robust depositional age constraints, and disputed provenance of many units in the succession. To achieve a better understanding of the stratigraphy of the Indus Basin, multispectral remote sensing image analysis resulted in a new geologic map that is consistent with field observations and previously published datasets, but suggests a substantial revision and simplification of the commonly assumed stratigraphic architecture of the basin. This stratigraphic framework guided a series of new provenance studies, wherein detrital U-Pb geochronology, 40Ar/39Ar and (U-Th)/He thermochronology, and trace-element geochemistry not only discount the hypothesis that collision began in the Early Oligocene, but also demonstrate that both Indian and Eurasian detritus arrived in the basin prior to deposition of the last marine limestone, constraining the age of collision to older than Early Eocene. Detrital (U-Th)/He thermochronology further elucidates the thermal history of the basin. Thus, we constrain backthrusting, thought to be an important mechanism by which Miocene convergence was accommodated, to between 11-7 Ma. Finally, an unprecedented conventional (U-Th)/He thermochronologic dataset was generated from a modern river sand to assess steady state assumptions of the source region. Using these data, the question of the minimum number of dates required for robust interpretation was critically evaluated. The application of a newly developed (U-Th)/He UV-laser-microprobe thermochronologic technique confirmed the results of the conventional dataset. This technique improves the practical utility of detrital mineral (U-Th)/He thermochronology, and will facilitate future studies of this type.
ContributorsTripathy, Alka (Author) / Hodges, Kip V (Thesis advisor) / Semken, Steven (Committee member) / Van Soest, Matthijs C (Committee member) / Whipple, Kelin X (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Arizona State University (Publisher)
Created2011
154919-Thumbnail Image.png
Description
Amazonia, inhabited and investigated for millennia, continues to astonish scientists with its cultural and natural diversity. Although Amazonia is rapidly changing, its vast and varied landscape still contains a complex natural pharmacopeia. The Amazonian tribes have accrued valuable environmental and geological knowledge that can be studied. This dissertation demonstrates that

Amazonia, inhabited and investigated for millennia, continues to astonish scientists with its cultural and natural diversity. Although Amazonia is rapidly changing, its vast and varied landscape still contains a complex natural pharmacopeia. The Amazonian tribes have accrued valuable environmental and geological knowledge that can be studied. This dissertation demonstrates that Indigenous Knowledge considered alongside Western Science can enhance our understanding of the relationship of people to geological materials and hydrological resources, and reveal mineral medicines with practical applications.

I used methods from anthropology and geology to explore the geological knowledge of the Uitoto, a tribe of the Colombian Amazon. The Uitoto use two metaphors to describe Earth systems: 1. the earth is a body, and 2. the Amazon is a tree. I found that they classify surface-water systems according to observable characteristics and use mineral clays to treat various maladies. I argue that Uitoto knowledge about Amazonian mineral resources and surface water is practical, empirically–based and, in many cases, more nuanced than mainstream scientific knowledge.

I studied the mode of action of a natural antibacterial clay from the Colombian Amazon (AMZ) to discover whether the Uitoto’s claims about the clay’s medicinal values was verifiable using the methods of Western Science. Natural antibacterial clays can inhibit the growth of human pathogens. Methods from microbiology and geochemistry were combined to evaluate the mineral-microbe interactions that inhibit growth of model Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria. The AMZ antibacterial clay contains 45 % kaolinites and 30 % smectites. Its high surface area maintains an acidic environment (pH 4.5) and releases high concentrations of aluminum. Aluminum accumulates in the outer membrane of E. coli by binding to phospholipids. Furthermore, the membrane’s permeability increases due to synergistic effects between aluminum and transition metals released from the AMZ (i.e. Fe, Cu). The changes in the membrane may compromise its function as a barrier. Understanding the antibacterial mechanism of AMZ is key for its safe use as a natural product. These findings can help us harness the capabilities of antibacterial clays more efficiently.

Lastly, I integrated the results of this work in place-based, cross-cultural educational materials tailored for the tribal schools in the Colombian Amazon. The design of the units was informed by principles of curriculum design and successful pedagogic approaches for Native American students. The purpose of these educational materials is to return the results of research, enhance learning and participation of indigenous peoples in geosciences, and respond to the multicultural and plurilingual educational needs in countries such as Colombia.
ContributorsLondoño Arias, Sandra Carolina (Author) / Williams, Lynda B (Thesis advisor) / Semken, Steven (Thesis advisor) / Brandt, Elizabeth A. (Committee member) / Hartnett, Hilairy H (Committee member) / Raymond, Jason (Committee member) / Arizona State University (Publisher)
Created2016
168758-Thumbnail Image.png
Description
Lithium (Li) is a trace element in kerogen, but the content and isotopic distribution (δ7Li) in kerogen has not previously been quantified. Furthermore, kerogen has been overlooked as a potential source of Li to sedimentary porefluids and buried sediments. Thus, knowing the content and isotopic composition of Li derived from

Lithium (Li) is a trace element in kerogen, but the content and isotopic distribution (δ7Li) in kerogen has not previously been quantified. Furthermore, kerogen has been overlooked as a potential source of Li to sedimentary porefluids and buried sediments. Thus, knowing the content and isotopic composition of Li derived from kerogen may have implications for research focused on the Li-isotopes of buried sediments (e.g., evaluating paleoclimate variations using marine carbonates).The objective of this work is to better understand the role of kerogen in the Li geochemical cycle. The research approach consisted of 1) developing reference materials and methodologies to measure the Li-contents and δ7Li of kerogen in-situ by Secondary Ion Mass Spectrometry, 2) surveying the Li-contents and δ7Li of kerogen bearing rocks from different depositional and diagenetic environments and 3) quantifying the Li-content and δ7Li variations in kerogen empirically in a field study and 4) experimentally through hydrous pyrolysis. A survey of δ7Li of coals from depositional basins across the USA showed that thermally immature coals have light δ7Li values (–20 to – 10‰) compared to typical terrestrial materials (> –10‰) and the δ7Li of coal increases with burial temperature suggesting that 6Li is preferentially released from kerogen to porefluids during hydrocarbon generation. A field study was conducted on two Cretaceous coal seams in Colorado (USA) intruded by dikes (mafic and felsic) creating a temperature gradient from the intrusives into the country rock. Results showed that δ7Li values of the unmetamorphosed vitrinite macerals were up to 37‰ lighter than vitrinite macerals and coke within the contact metamorphosed coal. To understand the significance of Li derived from kerogen during burial diagenesis, hydrous pyrolysis experiments of three coals were conducted. Results showed that Li is released from kerogen during hydrocarbon generation and could increase sedimentary porefluid Li-contents up to ~100 mg/L. The δ7Li of coals becomes heavier with increased temperature except where authigenic silicates may compete for the released Li. These results indicate that kerogen is a significant source of isotopically light Li to diagenetic fluids and is an important contributor to the global geochemical cycle.
ContributorsTeichert, Zebadiah (Author) / Williams, Lynda B. (Thesis advisor) / Bose, Maitrayee (Thesis advisor) / Hervig, Richard (Committee member) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2022