Matching Items (9)
Filtering by

Clear all filters

151565-Thumbnail Image.png
Description
Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size,

Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size, low power consumption, and robustness. There were two main objectives of the research conducted. The first objective was to design, fabricate, and test novel sensors that measure the amount of exposure to ionizing radiation for a wide range of applications including characterization of harsh environments. Two types of MEMS ionizing radiation dosimeters were developed. The first sensor was a passive radiation-sensitive capacitor-antenna design. The antenna's emitted frequency of peak-intensity changed as exposure time to radiation increased. The second sensor was a film bulk acoustic-wave resonator, whose resonant frequency decreased with increasing ionizing radiation exposure time. The second objective was to develop MEMS sensor systems that could be deployed to gather scientific data and to use that data to address the following research question: do temperature and/or conductivity predict the appearance of photosynthetic organisms in hot springs. To this end, temperature and electrical conductivity sensor arrays were designed and fabricated based on mature MEMS technology. Electronic circuits and the software interface to the electronics were developed for field data collection. The sensor arrays utilized in the hot springs yielded results that support the hypothesis that temperature plays a key role in determining where the photosynthetic organisms occur. Additionally, a cold-film fluidic flow sensor was developed, which is suitable for near-boiling temperature measurement. Future research should focus on (1) developing a MEMS pH sensor array with integrated temperature, conductivity, and flow sensors to provide multi-dimensional data for scientific study and (2) finding solutions to biofouling and self-calibration, which affects sensor performance over long-term deployment.
ContributorsOiler, Jonathon (Author) / Yu, Hongyu (Thesis advisor) / Anbar, Ariel (Committee member) / Hartnett, Hilairy (Committee member) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Arizona State University (Publisher)
Created2013
150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
151140-Thumbnail Image.png
Description
Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.
ContributorsRomaniello, Stephen J. (Author) / Anbar, Ariel (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herrmann, Achim (Committee member) / Shock, Everett (Committee member) / Wadhwa, Meenakshi (Committee member) / Arizona State University (Publisher)
Created2012
156103-Thumbnail Image.png
Description
Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.

I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide

Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.

I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide minerals to investigate the reactions available to carboxylic acids in the presence of mineral surfaces. By performing experiments containing one organic compound and one mineral surface, I can begin to unravel the different reactions that can occur in the presence of different minerals.

I performed experiments with phenylacetic acid (PAA), hydrocinnamic acid (HCA) and benzoic acid (BA) in the presence of spinel (MgAl2O4), magnetite (Fe3O4), hematite (Fe2O3), and corundum (Al2O3). The focus of this work was metal oxide minerals, with and without transition metal atoms, and with different crystal structures. I found that all four oxide minerals facilitated ketonic decarboxylation reactions of carboxylic acids to form ketone structures. The two minerals containing transition metals (magnetite and hematite) also opened a reaction path involving electrochemical oxidation of one carboxylic acid, PAA, to the shorter chain version of a second carboxylic acid, BA, in experiments starting with PAA. Fundamental studies like these can help to shape our knowledge of the breadth of organic reactions that are possible in geologic systems and the mechanisms of those reactions.
ContributorsJohnson, Kristin Nicole (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2017
156694-Thumbnail Image.png
Description
There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration,

There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration, and extent of marine redox changes.

The recent development of U isotopes (δ238U) in carbonates as a global ocean redox proxy has provided new insight into this problem. Reliable application and interpretation of the δ238U paleoproxy in geological records requires a thorough understanding of the reliability of δ238U recorded by bulk carbonate sediments. In this dissertation, I evaluate the robustness of δ238U paleoproxy by examining δ238U variations in marine carbonates across Permian-Triassic boundary (PTB) sections from different paleogeographic locations. Close agreement of δ238U profiles from coeval carbonate sections thousands of kilometers apart, in different ocean basins, and with different diagenetic histories, strongly suggests that bulk carbonate sediments can reliably preserve primary marine δ238U signals, validating the carbonate U-isotope proxy for global-ocean redox analysis.

To improve understanding of the role of marine redox in shaping the evolutionary trajectory of animals, high-resolution δ238U records were generated across several key evolutionary periods, including the Ediacaran-to-Early Cambrian Explosion of complex life (635-541 Ma) and the delayed Early Triassic Earth system recovery from the PTB extinction (252-246 Ma). Based on U isotope variations in the Ediacaran-to-the Early Cambrian ocean, the initial diversification of the Ediacara biota immediately postdates an episode of pervasive ocean oxygenation across the Shuram event. The subsequent decline and extinction of the Ediacara biota is coincident with an episode of extensive anoxic conditions during the latest Ediacaran Period. These findings suggest that global marine redox changes drove the rise and fall of the Ediacara biota. Based on U isotope variations, the Early Triassic ocean was characterized by multiple episodes of extensive marine anoxia. By comparing the high-resolution δ238U record with the sub-stage ammonoid extinction rate curve, it appears that multiple oscillations in marine anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.
ContributorsZhang, Feifei (Author) / Anbar, Ariel (Thesis advisor) / Gordon, Gwyneth (Committee member) / Hartnett, Hilairy (Committee member) / Wadhwa, Meenakshi (Committee member) / Ruff, Steven (Committee member) / Arizona State University (Publisher)
Created2018
158429-Thumbnail Image.png
Description
Archean oxidative weathering reactions were likely important O2 sinks that delayed the oxygenation of Earth’s atmosphere, as well as sources of bio-essential trace metals such as Mo to the biosphere. However, the rates of these reactions are difficult to quantify experimentally at relevantly low concentrations of O2. With newly developed

Archean oxidative weathering reactions were likely important O2 sinks that delayed the oxygenation of Earth’s atmosphere, as well as sources of bio-essential trace metals such as Mo to the biosphere. However, the rates of these reactions are difficult to quantify experimentally at relevantly low concentrations of O2. With newly developed O2 sensors, weathering experiments were conducted to measure the rate of sulfide oxidation at Archean levels of O2, a level three orders of magnitude lower than previous experiments. The rate laws produced, combined with weathering models, indicate that crustal sulfide oxidation by O2 was possible even in a low O2 Archean atmosphere.

Given the experimental results, it is expected that crustal delivery of bio-essential trace metals (such as Mo) from sulfide weathering was active even prior to the oxygenation of Earth’s atmosphere. Mo is a key metal for biological N2 fixation and its ancient use is evidenced by N isotopes in ancient sedimentary rocks. However, it is typically thought that Mo was too low to be effectively bioavailable early in Earth’s history, given the low abundances of Mo found in ancient sediments. To reconcile these observations, a computational model was built that leverages isotopic constraints to calculate the range of seawater concentrations possible in ancient oceans. Under several scenarios, bioavailable concentrations of seawater Mo were attainable and compatible with the geologic record. These results imply that Mo may not have been limiting for early metabolisms.

Titanium (Ti) isotopes were recently proposed to trace the evolution of the ancient continental crust, and have the potential to trace the distribution of other trace metals during magmatic differentiation. However, significant work remains to understand fully Ti isotope fractionation during crust formation. To calibrate this proxy, I carried out the first direct measurement of mineral-melt fractionation factors for Ti isotopes in Kilauea Iki lava lake and built a multi-variate fractionation law for Ti isotopes during magmatic differentiation. This study allows more accurate forward-modeling of isotope fractionation during crust differentiation, which can now be paired with weathering models and ocean mass balance to further reconstruct the composition of Earth’s early continental crust, atmosphere, and oceans.
ContributorsJohnson, Aleisha (Author) / Anbar, Ariel D. (Thesis advisor) / Till, Christy (Committee member) / Hartnett, Hilairy (Committee member) / Romaniello, Stephen J. (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2020
158528-Thumbnail Image.png
Description
My dissertation research broadly focuses on the geochemical and physical exchange of materials between the Earth’s crust and mantle at convergent margins, and how this drives the compositional diversity observed on the Earth’s surface. I combine traditional petrologic and geochemical studies of natural and experimental high-pressure mafic rocks, with thermodynamic

My dissertation research broadly focuses on the geochemical and physical exchange of materials between the Earth’s crust and mantle at convergent margins, and how this drives the compositional diversity observed on the Earth’s surface. I combine traditional petrologic and geochemical studies of natural and experimental high-pressure mafic rocks, with thermodynamic modeling of high-pressure aqueous fluids and mafic-ultramafic lithologies allowing for more complete understanding of fluid-melt-rock interactions. The results of the research that follows has important implications for: the role of lower crustal foundering in the geochemical origin and evolution of the modern continental crust (Chapter 2; Guild et al., under review), metasomatic processes involving aqueous metal-carbon complexes in high pressure-temperature subduction zone fluids (Chapter 3; Guild & Shock, 2020), natural hydrous mineral stability at the slab-mantle interface (Chapter 4; Guild, et al., in preparation) and water-undersaturated melting in the sub-arc (Chapter 5; Guild & Till, in preparation).
ContributorsGuild, Meghan Rose (Author) / Till, Christy B. (Thesis advisor) / Shock, Everett L (Committee member) / Hervig, Richard L (Committee member) / Hartnett, Hilairy (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2020
158279-Thumbnail Image.png
Description
Organic compounds are influenced by hydrothermal conditions in both marine and terrestrial environments. Sedimentary organic reservoirs make up the largest share of organic carbon in the carbon cycle, leading to petroleum generation and to chemoautotrophic microbial communities. There have been numerous studies on the reactivity of organic compounds in water

Organic compounds are influenced by hydrothermal conditions in both marine and terrestrial environments. Sedimentary organic reservoirs make up the largest share of organic carbon in the carbon cycle, leading to petroleum generation and to chemoautotrophic microbial communities. There have been numerous studies on the reactivity of organic compounds in water at elevated temperatures, but these studies rarely explore the consequences of inorganic solutes in hydrothermal fluids. The experiments in this thesis explore new reaction pathways of organic compounds mediated by aqueous and solid phase metals, mainly Earth-abundant copper. These experiments show that copper species have the potential to oxidize benzene and toluene, which are typically viewed as unreactive. These pathways add to the growing list of known organic transformations that are possible in natural hydrothermal systems. In addition to the characterization of reactions in natural systems, there has been recent interest in using hydrothermal conditions to facilitate organic transformations that would be useful in an applied, industrial or synthetic setting. This thesis identifies two sets of conditions that may serve as alternatives to commonplace industrial processes. The first process is the oxidation of benzene with copper to form phenol and chlorobenzene. The second is the copper mediated dehalogenation of aryl halides. Both of these processes apply the concepts of geomimicry by carrying out organic reactions under Earth-like conditions. Only water and copper are needed to implement these processes and there is no need for exotic catalysts or toxic reagents.
ContributorsLoescher, Grant (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2020
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023