Matching Items (8)

Interstellar Landscapes: Landscapes of Carbon and Magnesium Planets

Description

How do we visualize environments outside our solar system? I have researched two very alien planets and their compositions with the goal of finding out how those differences would affect

How do we visualize environments outside our solar system? I have researched two very alien planets and their compositions with the goal of finding out how those differences would affect the way a planet appears on its surface. The first is a planet orbiting the nearby G type star Tau Ceti. This star has Mg/Si ratio of 1.78, compared to 1.2 found on the Earth. A planet formed around this star could have a very active surface, covered in volcanoes. The other planet is a hypothetical carbon planet that could orbit the star HD 144899. This star has a C/O ratio of 0.8, compared to 0.5 in the Sun. A planet formed here might be comprised mostly of carbides, with a hydrocarbon atmosphere. It would likely be geologically dead, the main forces shaping its surface being meteorites. Both planets, due to their extremes, would likely be barren and lifeless. The results of this project are two digital paintings showcasing my vision of these planets.

Contributors

Agent

Created

Date Created
  • 2015-05

133545-Thumbnail Image.png

Biotic vs. Abiotic Processes in Hyperarid Exoplanetary Atmospheres

Description

Exoplanetary research is a key component in the search for life outside of Earth and the Solar System. It provides people with a sense of wonder about their role in

Exoplanetary research is a key component in the search for life outside of Earth and the Solar System. It provides people with a sense of wonder about their role in the evolution of the Universe and helps scientists understand life's potential throughout a seemingly infinite number of unique exoplanetary environments. The purpose of this research project is to identify the most plausible biosignature gases that would indicate life's existence in the context of hyperarid exoplanetary atmospheres. This analysis first defines hyperarid environments based on known analogues for Earth and Mars and discusses the methods that researchers use to determine whether or not an exoplanet is hyperarid. It then identifies the most relevant biosignatures to focus on based on the scientific literature on analogous hyperarid environments and ranks them in order from greatest to least biological plausibility within extreme hyperarid conditions. The research found that methane (CH4) and nitrous oxide (N2O) are the most helpful biosignature gases for these particular exoplanetary scenarios based on reviews of the literature. The research also found that oxygen (O2), hydrogen sulfide (H2S) and ammonia (NH3) are the biosignatures with the least likely biological origin and the highest likelihood of false positive detection. This analysis also found that carbon dioxide (CO2) is a useful companion biosignature within these environments when paired with either CH4 or the pairing of hydrogen (H2) and carbon monoxide (CO). This information will provide a useful road map for dealing with the detection of biosignatures within hyperarid exoplanetary atmospheres during future astrobiology research missions.

Contributors

Agent

Created

Date Created
  • 2018-05

158754-Thumbnail Image.png

The Primary Atmospheres of Planets: The Formation, The Impact on Planet Formation and How to Characterize Them

Description

Planets are generally believed to form in protoplanetary disks within a few million years (Myr) to several hundred Myr. But planetary embryos or protoplanets likely exist before disk gas dissipates

Planets are generally believed to form in protoplanetary disks within a few million years (Myr) to several hundred Myr. But planetary embryos or protoplanets likely exist before disk gas dissipates (in three to ten Myr), capturing H2 -rich primary atmospheres from the nebula. Exploring these primordial atmospheres of planets provides a pathway to understanding the origins and the diversity of planets in the solar system and beyond. In this dissertation, I studied the primary atmospheres by modeling their formation, their impacts on planet formation, and determining methods to characterize them on exoplanets.

First, I numerically investigated the flow structures and dynamics of the primary atmospheres accreted on Earth-sized planets with eccentric orbits. Such planets can generate atmosphere-stripping bow shocks, as their relative velocities to the gas are generally supersonic. The atmospheres are three to four orders of magnitude less massive than those of planets with circular orbits. Hydrodynamic simulations also revealed large-scale recycling gas flow in the post-shock regions. This study provides important insights into the impacts of migration and scattering on primary atmospheres.

Second, I looked into how the presence of the primary atmosphere affects the trajectories of chondrule precursors passing through a planetary bow shock. To determine what magnetic fields chondrules were exposed to as they cooled below their Curie points, I computed the gas properties and magnetic diffusion rates in the bow shock region of a planet with and without the primary atmosphere. I concluded that, if melted in planetary bow shocks, most chondrules were cooled in the far downstream and they probably recorded the background nebular field.

Last, I studied the characterization of cloudy primary atmospheres on exoplanets using a Bayesian retrieval approach. I focused on obtaining bulk cloud properties and the impact of clouds on constraining various atmospheric properties through transmission spectroscopy using the James Webb Space Telescope (JWST). Most key atmospheric and cloud inferences can be well constrained in the wavelength range (0.6 – 11 µ m) but there are different optimal wavelengths for constraining atmosphere or cloud parameters. Other results including degeneracies among cloud parameters can also serve as a guideline for future observers.

Contributors

Agent

Created

Date Created
  • 2020

156961-Thumbnail Image.png

ExoPlex: a new Python library for detailed modeling of rocky exoplanet internal structure and mineralogy

Description

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing rocky planet interiors is lacking. There is no doubt that a planet’s interior plays a key role in determining surface conditions including atmosphere composition and land area. Comparing data with diagrams of mass vs. radius for terrestrial planets provides only a first-order estimate of the internal structure and composition of planets [e.g. Seager et al 2007]. This thesis will present a new Python library, ExoPlex, which has routines to create a forward model of rocky exoplanets between 0.1 and 5 Earth masses. The ExoPlex code offers users the ability to model planets of arbitrary composition of Fe-Si-Mg-Al-Ca-O in addition to a water layer. This is achieved by modeling rocky planets after the earth and other known terrestrial planets. The three distinct layers which make up the Earth's internal structure are: core, mantle, and water. Terrestrial planet cores will be dominated by iron however, like earth, there may be some quantity of light element inclusion which can serve to enhance expected core volumes. In ExoPlex, these light element inclusions are S-Si-O and are included as iron-alloys. Mantles will have a more diverse mineralogy than planet cores. Unlike most other rocky planet models, ExoPlex remains unbiased in its treatment of the mantle in terms of composition. Si-Mg-Al-Ca oxide components are combined by predicting the mantle mineralogy using a Gibbs free energy minimization software package called Perple\_X [Connolly 2009]. By allowing an arbitrary composition, ExoPlex can uniquely model planets using their host star’s composition as an indicator of planet composition. This is a proven technique [Dorn et al 2015] which has not yet been widely utilized, possibly due to the lack of availability of easy to use software. I present a model sensitivity analysis to indicate the most important parameters to constrain in future observing missions. ExoPlex is currently available on PyPI so it may be installed using pip or conda on Mac OS or Linux based operating systems. It requires a specific scripting environment which is explained in the documentation currently stored on the ExoPlex GitHub page.

Contributors

Agent

Created

Date Created
  • 2018

157874-Thumbnail Image.png

The detectability and constraints of biosignature gasses in the near & mid-infrared from transit transmission spectroscopy

Description

The James Webb Space Telescope (JWST) is expected to revolutionize the current understanding of Jovian worlds over the coming decade. However, as the field pushes towards characterizing cooler, smaller, “terrestrial-like”

The James Webb Space Telescope (JWST) is expected to revolutionize the current understanding of Jovian worlds over the coming decade. However, as the field pushes towards characterizing cooler, smaller, “terrestrial-like” planets, dedicated next-generation facilities will be required to tease out the small spectral signatures indicative of biological activity. Here, the feasibility of determining atmospheric properties, from near to mid-infrared transmission spectra, of transiting temperate terrestrial M-dwarf companions, has been evaluated. Specifically, atmospheric retrievals were utilized to explore the trade space between spectral resolution, wavelength coverage, and signal-to-noise on the ability to both detect molecular species and constrain their abundances. Increasing spectral resolution beyond R=100 for near-infrared wavelengths, shorter than 5um, proves to reduce the degeneracy between spectral features of different molecules and thus greatly benefits the abundance constraints. However, this benefit is greatly diminished beyond 5um as any overlap between broad features in the mid-infrared does not deconvolve with higher resolutions. Additionally, the inclusion of features beyond 11um did not meaningfully improve the detection significance nor abundance constraints results. The findings of this study indicate that an instrument with continuous wavelength coverage from approximately 2-11um and with a resolution of R~50-300, would be capable of detecting H2O, CO2, CH4, O3, and N2O in the atmosphere of an Earth-analog transiting an M-dwarf (magK=8.0) within 50 transits, and obtain better than an order-of-magnitude constraint on each of their abundances.

The Origins Space Telescope (Origins) is one of four flagship mission concepts, under review by the 2020 Decadal Survey, that may take the mantle of the next-generation space-based observatory. In conjunction with this research, a secondary trade space study was performed on behalf of the Origins Exoplanets Working Group. The primary purpose of this collaboration was to provide a scientific basis to the technical specifications for the mid-infrared detectors onboard the Mid-Infrared Spectrometer Camera Transit Spectrometer (MISC-T) instrument. The results of this work directly contributed to the alteration of the official technical specifications of the instrument design concept.

Contributors

Agent

Created

Date Created
  • 2019

152707-Thumbnail Image.png

Variability of elemental abundances in the local neighborhood and its effect on planetary systems

Description

As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of

As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of τ Ceti. τ Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (~2) for this star, which could lead to alterations in planetary properties. τ Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets.

Contributors

Agent

Created

Date Created
  • 2014

152229-Thumbnail Image.png

The chemical composition of exoplanet-hosting binary star systems

Description

A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow,

A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow, some binary systems are now known to harbor planets around one or both stellar components. As a first look into composition of these planetary systems, I investigate the chemical compositions of 4 binary star systems, each of which is known to contain at least one planet. Stars are known to vary significantly in their composition, and their overall metallicity (represented by iron abundance, [Fe/H]) has been shown to correlate with the likelihood of hosting a planetary system. Furthermore, the detailed chemical composition of a system can give insight into the possible properties of the system's known exoplanets. Using high-resolution spectra, I quantify the abundances of up to 28 elements in each stellar component of the binary systems 16 Cyg, 83 Leo, HD 109749, and HD 195019. A direct comparison is made between each star and its binary companion to give a differential composition for each system. For each star, a comparison of elemental abundance vs. condensation temperature is made, which may be a good diagnostic of refractory-rich terrestrial planets in a system. The elemental ratios C/O and Mg/Si, crucial in determining the atmospheric composition and mineralogy of planets, are calculated and discussed for each star. Finally, the compositions and diagnostics of each binary system are discussed in terms of the known planetary and stellar parameters for each system.

Contributors

Agent

Created

Date Created
  • 2013

152054-Thumbnail Image.png

Trans-Neptunian and exosolar satellites and dust: dynamics and surface effects

Description

Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can

Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can anneal away radiation damage to the crystalline structure of surface water ice. This effect is enhanced by gravitational focusing for giant planet satellites. In addition, impacts of interplanetary dust particles on the small satellites of the Pluto system can eject into the system significant amounts of secondary intra-satellite dust. This dust is primarily swept up by Pluto and Charon, and could explain the observed albedo features on Pluto's surface. In addition to Pluto, a large fraction of trans-neptunian objects (TNOs) are binary or multiple systems. The mutual orbits of these TNO binaries can range from very wide (periods of several years) to near-contact systems (less than a day period). No single formation mechanism can explain this distribution. However, if the systems generally formed wide, a combination of solar and body tides (commonly called Kozai Cycles-Tidal Friction, KCTF) can cause most systems to tighten sufficiently to explain the observed distributions. This KCTF process can also be used to describe the orbital evolution of a terrestrial-class exoplanet after being captured as a satellite of a habitable-zone giant exoplanet. The resulting exomoon would be both potentially habitable and potenially detectable in the full Kepler data set.

Contributors

Agent

Created

Date Created
  • 2013