Matching Items (2)
152721-Thumbnail Image.png
Description
In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown from animal stem cells in a laboratory or factory. It is essentially meat that does not require an animal to be killed. Although it is still in the research phase of development, claims of its potential

In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown from animal stem cells in a laboratory or factory. It is essentially meat that does not require an animal to be killed. Although it is still in the research phase of development, claims of its potential benefits range from reducing the environmental impacts of food production to improving human health. However, technologies powerful enough to address such significant challenges often come with unintended consequences and a host of costs and benefits that seldom accrue to the same actors. In extreme cases, they can even be destabilizing to social, institutional, economic, and cultural systems. This investigation explores the sustainability implications of cultured meat before commercial facilities are established, unintended consequences are realized, and undesirable effects become reified and locked in. The study utilizes expert focus groups to explore the social implications, life cycle analysis to project the environmental implications, and economic input-output assessment to explore tradeoffs between conventionally-produced meat and factory-grown food products. The results suggest that, should cultured meat be widely adopted by consumers, food is likely to be increasingly a product of human design, perhaps becoming integrated into existing human institutions such as health care delivery and education. Environmentally, cultured meat could require smaller quantities of agricultural inputs and land than livestock. However, those avoided costs could come at the expense of more intensive energy use as biological processes are replaced with industrial systems. Finally, the research found that, since livestock production is a driver of significant economic activity, shifting away from traditional meat production in favor of cultured meat production could result in a net economic contraction.
ContributorsMattick, Carolyn Sue (Author) / Allenby, Braden R. (Thesis advisor) / Landis, Amy E. (Committee member) / Wetmore, Jameson M. (Committee member) / Arizona State University (Publisher)
Created2014
133526-Thumbnail Image.png
Description
This thesis investigates the potential of life cycle analysis for more sustainable sourcing strategies in organizations. Using the example of the College of Lake County (CLC) in Illinois, I study how life-cycle analysis can help to improve the procurement of products and services in higher education. Currently, CLC's purchasing team

This thesis investigates the potential of life cycle analysis for more sustainable sourcing strategies in organizations. Using the example of the College of Lake County (CLC) in Illinois, I study how life-cycle analysis can help to improve the procurement of products and services in higher education. Currently, CLC's purchasing team does not understand how sourcing affects operational and environmental performance. In addition, CLC's purchasing team does not communicate effectively with other departments from a product utilization standpoint. The objective of this research is to analyze CLC's current product procurement process and to assess the feasibility of implementing life cycle analysis tools. Further, I evaluate different life cycle analysis tools and provide recommendations to CLC about the applicability of these tools so that they may be implemented into the university in the future. First, I find that both the procurement and IT department at CLC are not familiar with life-cycle analysis tools and hence, do not know about the life cycle of their processes and services. Second, I identify professional life cycle analysis tools relevant for CLC. Two software options, GaBi and SimaPro, are discussed. Finally, I suggest six steps for a successful implementation of life cycle analysis at CLC: (1) form an interdisciplinary team, (2) analyze demand and collect additional data, (3) conduct a product life cycle analysis using a software tool, (4) define which products to analyze further, (5) conduct life cycle costing analysis with the same software tool, and (6) utilize these results for decisions and delegation of responsibility.
ContributorsGotsch, Rachel Lynne (Author) / Wiedmer, Robert (Thesis director) / Kashiwagi, Jacob (Committee member) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05