Matching Items (2)

133525-Thumbnail Image.png

An Assessment of the Performance of Machine Learning Techniques When Applied to Trajectory Optimization

Description

Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and

Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in an effort to assess the accuracy of a less time-consuming method of producing the magnitude of delta-v vectors required to abort from various points along a Near Rectilinear Halo Orbit. Although the utility of the study is limited, the accuracy of the delta-v predictions made by a Gaussian regression model is fairly accurate after a relatively swift computation time, paving the way for more concentrated studies of this nature in the future.

Contributors

Agent

Created

Date Created
  • 2018-05

150359-Thumbnail Image.png

S-Taliro: a tool for temporal logic falsification for hybrid systems

Description

S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal robustness in hybrid systems that are implemented as either m-functions or Simulink/State flow models. Trajectories with minimal

S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal robustness in hybrid systems that are implemented as either m-functions or Simulink/State flow models. Trajectories with minimal robustness are found using automatic testing of hybrid systems against user specifications. In this work we use Metric Temporal Logic (MTL) to describe the user specifications for the hybrid systems. We then try to falsify the MTL specification using global minimization of robustness metric. Global minimization is carried out using stochastic optimization algorithms like Monte-Carlo (MC) and Extended Ant Colony Optimization (EACO) algorithms. Irrespective of the type of the model we provide as an input to S-Taliro, the user needs to specify the MTL specification, the initial conditions and the bounds on the inputs. S-Taliro then uses this information to generate test inputs which are used to simulate the system. The simulation trace is then provided as an input to Taliro which computes the robustness estimate of the MTL formula. Global minimization of this robustness metric is performed to generate new test inputs which again generate simulation traces which are closer to falsifying the MTL formula. Traces with negative robustness values indicate that the simulation trace falsified the MTL formula. Traces with positive robustness values are also of great importance because they indicate how robust the system is against the given specification. S-Taliro has been seamlessly integrated into the Matlab environment, which is extensively used for model-based development of control software. Moreover the toolbox has been developed in a modular fashion and therefore adding new optimization algorithms is easy and straightforward. In this work I present the architecture of S-Taliro and its working on a few benchmark problems.

Contributors

Agent

Created

Date Created
  • 2011