Matching Items (3)
Filtering by

Clear all filters

137375-Thumbnail Image.png
Description
Smartphones have become increasingly common over the past few years, and mobile games continue to be the most common type of application (Apple, Inc., 2013). For many people, the social aspect of gaming is very important, and thus most mobile games include support for playing with multiple players. However, there

Smartphones have become increasingly common over the past few years, and mobile games continue to be the most common type of application (Apple, Inc., 2013). For many people, the social aspect of gaming is very important, and thus most mobile games include support for playing with multiple players. However, there is a lack of common knowledge about which implementation of this functionality is most favorable from a development standpoint. In this study, we evaluate three different types of multiplayer gameplay (pass-and-play, Bluetooth, and GameCenter) via development cost and user interviews. We find that pass-and-play, the most easily-implemented mode, is not favored by players due to its inconvenience. We also find that GameCenter is not as well favored as expected due to latency of GameCenter's servers, and that Bluetooth multiplayer is the most well favored for social play due to its similarity to real-life play. Despite there being a large overhead in developing and testing Bluetooth and GameCenter multiplayer due to Apple's development process, this is irrelevant since professional developers must enroll in this process anyway. Therefore, the most effective multiplayer mode to develop is mostly determined by whether Internet play is desirable: Bluetooth if not, GameCenter if so. Future studies involving more complete development work and more types of multiplayer modes could yield more promising results.
ContributorsBradley, Michael Robert (Author) / Collofello, James (Thesis director) / Wilkerson, Kelly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
155505-Thumbnail Image.png
Description
While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various

While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various warnings presented to drivers while they were operating a smart phone. Experiment One attempted to understand which smart phone tasks, (text vs image) or (self-paced vs other-paced) are the most distracting to a driver. Experiment Two compared the effectiveness of different smartphone based applications (app’s) for mitigating driver distraction. Experiment Three investigated the effects of informative auditory and tactile warnings which were designed to convey directional information to a distracted driver (moving towards or away). Lastly, Experiment Four extended the research into the area of autonomous driving by investigating the effectiveness of different auditory take-over request signals. Novel to both Experiment Three and Four was that the warnings were delivered from the source of the distraction (i.e., by either the sound triggered at the smart phone location or through a vibration given on the wrist of the hand holding the smart phone). This warning placement was an attempt to break the driver’s attentional focus on their smart phone and understand how to best re-orient the driver in order to improve the driver’s situational awareness (SA). The overall goal was to explore these novel methods of improved SA so drivers may more quickly and appropriately respond to a critical event.
ContributorsMcNabb, Jaimie Christine (Author) / Gray, Dr. Rob (Thesis advisor) / Branaghan, Dr. Russell (Committee member) / Becker, Dr. Vaughn (Committee member) / Arizona State University (Publisher)
Created2017
137724-Thumbnail Image.png
Description
Over the past several years, the three major mobile platforms have seen
tremendous growth and success; as a result, the platforms have been the target
of many malicious attacks. These attacks often request certain permissions in
order to carry out the malicious activities, and uninformed users usually grant
them. One prevalent example of this

Over the past several years, the three major mobile platforms have seen
tremendous growth and success; as a result, the platforms have been the target
of many malicious attacks. These attacks often request certain permissions in
order to carry out the malicious activities, and uninformed users usually grant
them. One prevalent example of this type of malware is one that requests
permission  to  the  device’s  SMS  service,  and  once  obtained,  uses  the  SMS
service to accrue charges to the user. This type of attack is one of the most
prevalent on the Android application marketplace, and requires a long-term
solution. Replication of an attack is necessary to fully understand efficient
prevention methods, and due to the open-source nature of Android development,
to determine the likely mechanics of the attack as feasible.
This study uses the Hacker News application, an open source application
that is available for download through GitHub as a basis for creating a malware
application to study the SMS attack and explore prevention methods. From the
results and knowledge gained from both research and experimentation, a
proposition for a more secure operating system architecture was defined to
prevent and mitigate various attacks on mobile systems with a focus on SMS
attacks.
ContributorsRomo, James Tyler (Co-author) / Rezende, Bryan (Co-author) / Whitaker, Jeremy (Co-author) / Ahn, Gail-Joon (Thesis director) / Wilkerson, Kelly (Committee member) / Conquest, Kevin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05