Matching Items (3)
Filtering by

Clear all filters

152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
156761-Thumbnail Image.png
Description
The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent

The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent loss sources are analyzed separately, and the weight of each in the total loss at the MPP are evaluated. The total series resistance is measured and then compared with the value obtained through summation over each of its components. In other words, series resistance losses due to recombination, vertical and lateral carrier transport, metalization, etc, are individually evaluated, and then by adding all these components together, the total loss is calculated. The concept of ll factor and its direct dependence on the loss mechanisms at the MPP of the device is explained, and its sensitivity to nearly every processing step of the cell fabrication is investigated. This analysis provides a focus lens to identify the main source of losses in SHJ solar cells and pave the path for further improvements in cell efficiency.

In this thesis, we provide a detailed understanding of the FF concept; we explain how it can be directly measured; how it can be calculated and what expressions can better approximate its value and under what operating conditions. The relation between FF and cell operating condition at the MPP is investigated. We separately analyzed the main FF sources of losses including recombination, sheet resistance, contact resistance and metalization. We study FF loss due to recombination and its separate components which include the Augur, radiative and SRH recombination is investigated. We study FF loss due to contact resistance and its separate components which include the contact resistance of dierent interfaces, e.g. between the intrinsic and doped a-Si layers, TCO and a-Si layers. We also study FF loss due to lateral transport and its components that including the TCO sheet resistance, the nger and the busbars resistances.
ContributorsLeilaeioun, Mohammadmehdi (Ashling) (Author) / Goodnick, Stephen (Thesis advisor) / Goryll, Michael (Thesis advisor) / Bertoni, Mariana (Committee member) / Bowden, Stuart (Committee member) / Stuckelberger, Michael (Committee member) / Arizona State University (Publisher)
Created2018
157247-Thumbnail Image.png
Description
Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost

Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost of electricity from PV remains about a factor of two higher than the fossil fuel (10¢/kWh). Widely-used commercial methods employed to generate PV energy, such as silicon or thin film-based technologies, are still expensive as they are processed through vacuum-based techniques. Therefore, it is desirable to find an alternative method that is open-air and continuous process for the mass production of solar cells.

The objective of the research in this thesis is to develop low-cost spray pyrolysis technique to synthesize oxides thin films for applications in solar cells. Chapter 4 and 5 discuss spray-deposited dielectric oxides for their applications in Si solar cells. In Chapter 4, a successful deposition of Al2O3 is demonstrated using water as the solvent which ensures a lower cost and safer process environment. Optical, electrical, and structural properties of spray-deposited Al2O3 are investigated and compared to the industrial standard Atomic Layer Deposition (ALD) Al2O3/Plasma Enhanced Chemical Vapor Deposition (PECVD) SiNx stack, to reveal the suitability of spray-deposited Al2O3 for rear passivation and optical trapping in p-type Si Passivated Emitter and Rear Cell (PERC) solar cells. In Chapter 5, The possibility of using low-cost spray-deposited ZrO2 as the antireflection coating for Si solar cells is investigated. Optical, electrical and structural properties of spray-deposited ZrO2 films are studied and compared to the industrial standard antireflection coating PECVD SiNx. In Chapter 6, spray-deposited hematite Fe2O3 and sol-gel prepared anatase TiO2 thin films are sulfurized by annealing in H2S to investigate the band gap narrowing by sulfur doping and explore the possibility of using ternary semiconductors for their application as solar absorbers.
ContributorsShin, Woo Jung (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2019