Matching Items (6)
Filtering by

Clear all filters

152110-Thumbnail Image.png
Description
In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used.

In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided.
ContributorsRosenbalm, Daniel Curtis (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra L. (Committee member) / Kavazanjian, Edward (Committee member) / Witczak, Mathew W (Committee member) / Arizona State University (Publisher)
Created2013
153411-Thumbnail Image.png
Description
Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of

Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In the first part of the thesis, we described a multiscale study aiming at understanding the fundamental mechanisms governing wetting and adhesion of gallium-based liquid metals. In particular, macroscale dynamic contact angle measurements were coupled with Scanning Electron Microscope (SEM) imaging to relate macroscopic drop adhesion to morphology of the liquid metal-surface interface. In addition, room temperature liquid-metal microfluidic devices are also attractive systems for hyperelastic strain sensing. Currently two types of liquid metal-based strain sensors exist for inplane measurements: single-microchannel resistive and two-microchannel capacitive devices. However, with a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter, limiting the number of sensors that can be embedded into. In the second part of the thesis, firstly, simulations and an experimental setup consisting of two GaInSn filled tubes submerged within a dielectric liquid bath are used to quantify the effects of the cylindrical electrode geometry including diameter, spacing, and meniscus shape as well as dielectric constant of the insulating liquid and the presence of tubing on the overall system's capacitance. Furthermore, a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel is developed. Lastly, capacitance and response of this compact device to strain and operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces are described.
ContributorsLiu, Shanliangzi (Author) / Rykaczewski, Konrad (Thesis advisor) / Alford, Terry (Committee member) / Herrmann, Marcus (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2015
149946-Thumbnail Image.png
Description
Yannis Constantinidis was the last of the handful of composers referred to collectively as the Greek National School. The members of this group strove to create a distinctive national style for Greece, founded upon a synthesis of Western compositional idioms with melodic, rhyhmic, and modal features of their local folk

Yannis Constantinidis was the last of the handful of composers referred to collectively as the Greek National School. The members of this group strove to create a distinctive national style for Greece, founded upon a synthesis of Western compositional idioms with melodic, rhyhmic, and modal features of their local folk traditions. Constantinidis particularly looked to the folk melodies of his native Asia Minor and the nearby Dodecanese Islands. His musical output includes operettas, musical comedies, orchestral works, chamber and vocal music, and much piano music, all of which draws upon folk repertories for thematic material. The present essay examines how he incorporates this thematic material in his piano compositions, written between 1943 and 1971, with a special focus on the 22 Songs and Dances from the Dodecanese. In general, Constantinidis's pianistic style is expressed through miniature pieces in which the folk tunes are presented mostly intact, but embedded in accompaniment based in early twentieth-century modal harmony. Following the dictates of the founding members of the Greek National School, Manolis Kalomiris and Georgios Lambelet, the modal basis of his harmonic vocabulary is firmly rooted in the characteristics of the most common modes of Greek folk music. A close study of his 22 Songs and Dances from the Dodecanese not only offers a valuable insight into his harmonic imagination, but also demonstrates how he subtly adapts his source melodies. This work also reveals his care in creating a musical expression of the words of the original folk songs, even in purely instrumental compositon.
ContributorsSavvidou, Dina (Author) / Hamilton, Robert (Thesis advisor) / Little, Bliss (Committee member) / Meir, Baruch (Committee member) / Thompson, Janice M (Committee member) / Arizona State University (Publisher)
Created2011
Description
This paper describes six representative works by twentieth-century Chinese composers: Jian-Zhong Wang, Er-Yao Lin, Yi-Qiang Sun, Pei-Xun Chen, Ying-Hai Li, and Yi Chen, which are recorded by the author on the CD. The six pieces selected for the CD all exemplify traits of Nationalism, with or without Western influences. Of

This paper describes six representative works by twentieth-century Chinese composers: Jian-Zhong Wang, Er-Yao Lin, Yi-Qiang Sun, Pei-Xun Chen, Ying-Hai Li, and Yi Chen, which are recorded by the author on the CD. The six pieces selected for the CD all exemplify traits of Nationalism, with or without Western influences. Of the six works on the CD, two are transcriptions of the Han Chinese folk-like songs, one is a composition in the style of the Uyghur folk music, two are transcriptions of traditional Chinese instrumental music dating back to the eighteenth century, and one is an original composition in a contemporary style using folk materials. Two of the composers, who studied in the United States, were strongly influenced by Western compositional style. The other four, who did not study abroad, retained traditional Chinese style in their compositions. The pianistic level of difficulty in these six pieces varies from intermediate to advanced level. This paper includes biographical information for the six composers, background information on the compositions, and a brief analysis of each work. The author was exposed to these six pieces growing up, always believing that they are beautiful and deserve to be appreciated. When the author came to the United States for her studies, she realized that Chinese compositions, including these six pieces, were not sufficiently known to her peers. This recording and paper are offered in the hopes of promoting a wider familiarity with Chinese music and culture.
ContributorsLuo, Yali, D.M.A (Author) / Hamilton, Robert (Thesis advisor) / Campbell, Andrew (Committee member) / Pagano, Caio (Committee member) / Cosand, Walter (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2012
150273-Thumbnail Image.png
Description
The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as

The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as composers at the time of this study. They include Fan-Ling Su (b. 1955), Hwei-Lee Chang (b. 1956), Shyh-Ji Pan-Chew (b. 1957), and Kwang-I Ying (b. 1960). Detailed biographical information on the four composers is presented and discussed. In addition, the musical form and features of all solo piano works at all levels by the four composers are analyzed, and the musical characteristics of each composer's work are discussed. The biography of a fifth composer, Wei-Ho Dai (b. 1950), is also discussed but is placed in the Appendices because her piano music could not be located. This research paper is presented in six chapters: (1) Prologue; the life and music of (2) Fan-Ling Su, (3) Hwei-Lee Chang, (4) Shyh-Ji Pan-Chew, and (5) Kwang-I Ying; and (6) Conclusion. The Prologue provides an overview of the development of Western classical music in Taiwan, a review of extant literature on the selected composers and their music, and the development of piano music in Taiwan. The Conclusion is comprised of comparisons of the four composers' music, including their personal interests and preferences as exhibited in their music. For example, all of the composers have used atonality in their music. Two of the composers, Fan-Ling Su and Kwang-I Ying, openly apply Chinese elements in their piano works, while Hwei-Lee Chang tries to avoid direct use of the Chinese pentatonic scale. The piano works of Hwei-Lee Chang and Shyh-Ji Pan-Chew are chromatic and atonal, and show an economical usage of material. Biographical information on Wei-Ho Dai and an overview of Taiwanese history are presented in the Appendices.
ContributorsWang, Jinding (Author) / Pagano, Caio (Thesis advisor) / Campbell, Andrew (Committee member) / Humphreys, Jere T. (Committee member) / Meyer-Thompson, Janice (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011
155231-Thumbnail Image.png
Description
Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are

Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are still prone to physical degradation and lack durability. In contrast to surface engineering, this thesis focuses on altering the bulk composition and the interior of a material to tune how an exterior surface would interact with liquids. Fundamental and applied aspects of engineering of two material systems with low contact angle hysteresis (i.e. ability to easily shed droplets) are explained. First, water-shedding metal matrix hydrophobic nanoparticle composites with high thermal conductivity for steam condensation rate enhancement are discussed. Despite having static contact angle <90° (not hydrophobic), sustained dropwise steam condensation can be achieved at the exterior surface of the composite due to low contact angle hysteresis (CAH). In order to explain this observation, the effect of varying the length scale of surface wetting heterogeneity over three orders of magnitude on the value of CAH was experimentally investigated. This study revealed that the CAH value is primarily governed by the pinning length which in turn depends on the length scale of wetting heterogeneity. Modifying the heterogeneity size ultimately leads to near isotropic wettability for surfaces with highly anisotropic nanoscale chemical heterogeneities. Next, development of lubricant-swollen polymeric omniphobic protective gear for defense and healthcare applications is described. Specifically, it is shown that the robust and durable protective gear can be made from polymeric material fully saturated with lubricant that can shed all liquids irrespective of their surface tensions even after multiple contact incidences with the foreign objects. Further, a couple of schemes are proposed to improve the rate of lubrication and replenishment of lubricant as well as reduce the total amount of lubricant required in making the polymeric protective gear omniphobic. Overall, this research aims to understand the underlying physics of dynamic surface-liquid interaction and provides simple scalable route to fabricate better materials for condensers and omniphobic protective gear.
ContributorsDamle, Viraj (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Lin, Jerry (Committee member) / Herrmann, Marcus (Committee member) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017