Matching Items (1,232)
Filtering by

Clear all filters

152003-Thumbnail Image.png
Description
We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.
ContributorsDesai, Vaishnav (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsShi, Ge (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
152813-Thumbnail Image.png
Description
Continuous monitoring of sensor data from smart phones to identify human activities and gestures, puts a heavy load on the smart phone's power consumption. In this research study, the non-Euclidean geometry of the rich sensor data obtained from the user's smart phone is utilized to perform compressive analysis and efficient

Continuous monitoring of sensor data from smart phones to identify human activities and gestures, puts a heavy load on the smart phone's power consumption. In this research study, the non-Euclidean geometry of the rich sensor data obtained from the user's smart phone is utilized to perform compressive analysis and efficient classification of human activities by employing machine learning techniques. We are interested in the generalization of classical tools for signal approximation to newer spaces, such as rotation data, which is best studied in a non-Euclidean setting, and its application to activity analysis. Attributing to the non-linear nature of the rotation data space, which involve a heavy overload on the smart phone's processor and memory as opposed to feature extraction on the Euclidean space, indexing and compaction of the acquired sensor data is performed prior to feature extraction, to reduce CPU overhead and thereby increase the lifetime of the battery with a little loss in recognition accuracy of the activities. The sensor data represented as unit quaternions, is a more intrinsic representation of the orientation of smart phone compared to Euler angles (which suffers from Gimbal lock problem) or the computationally intensive rotation matrices. Classification algorithms are employed to classify these manifold sequences in the non-Euclidean space. By performing customized indexing (using K-means algorithm) of the evolved manifold sequences before feature extraction, considerable energy savings is achieved in terms of smart phone's battery life.
ContributorsSivakumar, Aswin (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2014
ContributorsShatuho, Kristina (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-27
ContributorsCarlisi, Daniel (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-07
149946-Thumbnail Image.png
Description
Yannis Constantinidis was the last of the handful of composers referred to collectively as the Greek National School. The members of this group strove to create a distinctive national style for Greece, founded upon a synthesis of Western compositional idioms with melodic, rhyhmic, and modal features of their local folk

Yannis Constantinidis was the last of the handful of composers referred to collectively as the Greek National School. The members of this group strove to create a distinctive national style for Greece, founded upon a synthesis of Western compositional idioms with melodic, rhyhmic, and modal features of their local folk traditions. Constantinidis particularly looked to the folk melodies of his native Asia Minor and the nearby Dodecanese Islands. His musical output includes operettas, musical comedies, orchestral works, chamber and vocal music, and much piano music, all of which draws upon folk repertories for thematic material. The present essay examines how he incorporates this thematic material in his piano compositions, written between 1943 and 1971, with a special focus on the 22 Songs and Dances from the Dodecanese. In general, Constantinidis's pianistic style is expressed through miniature pieces in which the folk tunes are presented mostly intact, but embedded in accompaniment based in early twentieth-century modal harmony. Following the dictates of the founding members of the Greek National School, Manolis Kalomiris and Georgios Lambelet, the modal basis of his harmonic vocabulary is firmly rooted in the characteristics of the most common modes of Greek folk music. A close study of his 22 Songs and Dances from the Dodecanese not only offers a valuable insight into his harmonic imagination, but also demonstrates how he subtly adapts his source melodies. This work also reveals his care in creating a musical expression of the words of the original folk songs, even in purely instrumental compositon.
ContributorsSavvidou, Dina (Author) / Hamilton, Robert (Thesis advisor) / Little, Bliss (Committee member) / Meir, Baruch (Committee member) / Thompson, Janice M (Committee member) / Arizona State University (Publisher)
Created2011
Description
This paper describes six representative works by twentieth-century Chinese composers: Jian-Zhong Wang, Er-Yao Lin, Yi-Qiang Sun, Pei-Xun Chen, Ying-Hai Li, and Yi Chen, which are recorded by the author on the CD. The six pieces selected for the CD all exemplify traits of Nationalism, with or without Western influences. Of

This paper describes six representative works by twentieth-century Chinese composers: Jian-Zhong Wang, Er-Yao Lin, Yi-Qiang Sun, Pei-Xun Chen, Ying-Hai Li, and Yi Chen, which are recorded by the author on the CD. The six pieces selected for the CD all exemplify traits of Nationalism, with or without Western influences. Of the six works on the CD, two are transcriptions of the Han Chinese folk-like songs, one is a composition in the style of the Uyghur folk music, two are transcriptions of traditional Chinese instrumental music dating back to the eighteenth century, and one is an original composition in a contemporary style using folk materials. Two of the composers, who studied in the United States, were strongly influenced by Western compositional style. The other four, who did not study abroad, retained traditional Chinese style in their compositions. The pianistic level of difficulty in these six pieces varies from intermediate to advanced level. This paper includes biographical information for the six composers, background information on the compositions, and a brief analysis of each work. The author was exposed to these six pieces growing up, always believing that they are beautiful and deserve to be appreciated. When the author came to the United States for her studies, she realized that Chinese compositions, including these six pieces, were not sufficiently known to her peers. This recording and paper are offered in the hopes of promoting a wider familiarity with Chinese music and culture.
ContributorsLuo, Yali, D.M.A (Author) / Hamilton, Robert (Thesis advisor) / Campbell, Andrew (Committee member) / Pagano, Caio (Committee member) / Cosand, Walter (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2012
150273-Thumbnail Image.png
Description
The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as

The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as composers at the time of this study. They include Fan-Ling Su (b. 1955), Hwei-Lee Chang (b. 1956), Shyh-Ji Pan-Chew (b. 1957), and Kwang-I Ying (b. 1960). Detailed biographical information on the four composers is presented and discussed. In addition, the musical form and features of all solo piano works at all levels by the four composers are analyzed, and the musical characteristics of each composer's work are discussed. The biography of a fifth composer, Wei-Ho Dai (b. 1950), is also discussed but is placed in the Appendices because her piano music could not be located. This research paper is presented in six chapters: (1) Prologue; the life and music of (2) Fan-Ling Su, (3) Hwei-Lee Chang, (4) Shyh-Ji Pan-Chew, and (5) Kwang-I Ying; and (6) Conclusion. The Prologue provides an overview of the development of Western classical music in Taiwan, a review of extant literature on the selected composers and their music, and the development of piano music in Taiwan. The Conclusion is comprised of comparisons of the four composers' music, including their personal interests and preferences as exhibited in their music. For example, all of the composers have used atonality in their music. Two of the composers, Fan-Ling Su and Kwang-I Ying, openly apply Chinese elements in their piano works, while Hwei-Lee Chang tries to avoid direct use of the Chinese pentatonic scale. The piano works of Hwei-Lee Chang and Shyh-Ji Pan-Chew are chromatic and atonal, and show an economical usage of material. Biographical information on Wei-Ho Dai and an overview of Taiwanese history are presented in the Appendices.
ContributorsWang, Jinding (Author) / Pagano, Caio (Thesis advisor) / Campbell, Andrew (Committee member) / Humphreys, Jere T. (Committee member) / Meyer-Thompson, Janice (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsShi, Zhan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26
151028-Thumbnail Image.png
Description
In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can

In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can get very involved due to the underlying non-linearity associated with the space. As a result a complex task such as manifold sequence matching would require very large number of computations making it hard to use in practice. We believe that one can device smart approximation algorithms for several classes of such problems which take into account the geometry of the manifold and maintain the favorable properties of the exact approach. This problem has several applications in areas of human activity discovery and recognition, where several features and representations are naturally studied in a non-Euclidean setting. We propose a novel solution to the problem of indexing manifold-valued sequences by proposing an intrinsic approach to map sequences to a symbolic representation. This is shown to enable the deployment of fast and accurate algorithms for activity recognition, motif discovery, and anomaly detection. Toward this end, we present generalizations of key concepts of piece-wise aggregation and symbolic approximation for the case of non-Euclidean manifolds. Experiments show that one can replace expensive geodesic computations with much faster symbolic computations with little loss of accuracy in activity recognition and discovery applications. The proposed methods are ideally suited for real-time systems and resource constrained scenarios.
ContributorsAnirudh, Rushil (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2012