Matching Items (1,234)
Filtering by

Clear all filters

152245-Thumbnail Image.png
Description
The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or

The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or 4-bp codons. There has been considerable progress in developing new types of amino acids, in identifying novel methods of tRNA aminoacylation, and in expanding the genetic code to direct their position. Chemical aminoacylation of tRNAs is accomplished by acylation and ligation of a dinucleotide (pdCpA) to the 3'-terminus of truncated tRNA. This strategy allows the incorporation of a wide range of natural and unnatural amino acids into pre-determined sites, thereby facilitating the study of structure-function relationships in proteins and allowing the investigation of their biological, biochemical and biophysical properties. Described in Chapter 1 is the current methodology for synthesizing aminoacylated suppressor tRNAs. Aminoacylated suppressor tRNACUAs are typically prepared by linking pre-aminoacylated dinucleotides (aminoacyl-pdCpAs) to 74 nucleotide (nt) truncated tRNAs (tRNA-COH) via a T4 RNA ligase mediated reaction. Alternatively, there is another route outlined in Chapter 1 that utilizes a different pre-aminoacylated dinucleotide, AppA. This dinucleotide has been shown to be a suitable substrate for T4 RNA ligase mediated coupling with abbreviated tRNA-COHs for production of 76 nt aminoacyl-tRNACUAs. The synthesized suppressor tRNAs have been shown to participate in protein synthesis in vitro, in an S30 (E. coli) coupled transcription-translation system in which there is a UAG codon in the mRNA at the position corresponding to Val10. Chapter 2 describes the synthesis of two non-proteinogenic amino acids, L-thiothreonine and L-allo-thiothreonine, and their incorporation into predetermined positions of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine. Here, the elaborated proteins were site-specifically derivitized with a fluorophore at the thiothreonine residue. The synthesis and incorporation of phosphorotyrosine derivatives into DHFR is illustrated in Chapter 3. Three different phosphorylated tyrosine derivatives were prepared: bis-nitrobenzylphosphoro-L-tyrosine, nitrobenzylphosphoro-L-tyrosine, and phosphoro-L-tyrosine. Their ability to participate in a protein synthesis system was also evaluated.
ContributorsNangreave, Ryan Christopher (Author) / Hecht, Sidney M. (Thesis advisor) / Yan, Hao (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsShi, Ge (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsShatuho, Kristina (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-27
152880-Thumbnail Image.png
Description
The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine

The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm2 at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells.
ContributorsWang, Dong (Author) / Allen, James P. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
153302-Thumbnail Image.png
Description
Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions

Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions because they could have seeded early Earth with significant amounts of water and pre-biotic, organic material, their record of abiotic, aqueous, and organic geochemistry is of interest as well.

CC materials previously resided on asteroidal parent bodies, relic planetesimals of Solar System formation which never accreted enough material to develop long-lived, large-scale geological processes. These bodies were large enough, however, to experience some degree of heating due to the decay of radiogenic isotopes, and the meteorite record suggests the existence of 100-150 parent bodies which experienced varying degrees of thermal and aqueous alteration for the first several 10 Myr of Solar System history.

The first chapter of this dissertation reviews literature addressing aqueous alteration as an essential participant in parent body geochemistry, organic synthesis, or both (though papers which address both are rare). The second chapter is a published organic analysis of the soluble organic material of Bells, an unclassified type 2 chondrite. Analytical approaches to assess terrestrial contamination of meteorite samples are also reviewed in the first chapter to allow introduction in chapter 3 of kinetic modeling which rules out certain cases of contamination and constrains the timing of thermal and aqueous alteration. This is the first known application of isoleucine epimerization for either of these purposes. Chapter 4 is a kinetic study of D-allo-isoleucine epimerization to establish its behavior in systems with large, relative abundances of alloisoleucine to isoleucine. Previous epimerization studies for paleontological or geological purposes began with L-isoleucine, the only protein amino acid of the four isoleucine stereoisomers.

Kinetic model calculations using isoleucine stereoisomer abundances from 7 CR chondrites constrain the total duration of the amino acids' residence in the aqueous phase. The comparatively short timescales produced by the presented modeling elicit hypotheses for protection or transport of the amino acids within the CR parent body.
ContributorsMonroe, Adam Alexander (Author) / Pizzarello, Sandra (Thesis advisor) / Williams, Peter (Thesis advisor) / Anbar, Ariel D (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2014
ContributorsCarlisi, Daniel (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-07
149946-Thumbnail Image.png
Description
Yannis Constantinidis was the last of the handful of composers referred to collectively as the Greek National School. The members of this group strove to create a distinctive national style for Greece, founded upon a synthesis of Western compositional idioms with melodic, rhyhmic, and modal features of their local folk

Yannis Constantinidis was the last of the handful of composers referred to collectively as the Greek National School. The members of this group strove to create a distinctive national style for Greece, founded upon a synthesis of Western compositional idioms with melodic, rhyhmic, and modal features of their local folk traditions. Constantinidis particularly looked to the folk melodies of his native Asia Minor and the nearby Dodecanese Islands. His musical output includes operettas, musical comedies, orchestral works, chamber and vocal music, and much piano music, all of which draws upon folk repertories for thematic material. The present essay examines how he incorporates this thematic material in his piano compositions, written between 1943 and 1971, with a special focus on the 22 Songs and Dances from the Dodecanese. In general, Constantinidis's pianistic style is expressed through miniature pieces in which the folk tunes are presented mostly intact, but embedded in accompaniment based in early twentieth-century modal harmony. Following the dictates of the founding members of the Greek National School, Manolis Kalomiris and Georgios Lambelet, the modal basis of his harmonic vocabulary is firmly rooted in the characteristics of the most common modes of Greek folk music. A close study of his 22 Songs and Dances from the Dodecanese not only offers a valuable insight into his harmonic imagination, but also demonstrates how he subtly adapts his source melodies. This work also reveals his care in creating a musical expression of the words of the original folk songs, even in purely instrumental compositon.
ContributorsSavvidou, Dina (Author) / Hamilton, Robert (Thesis advisor) / Little, Bliss (Committee member) / Meir, Baruch (Committee member) / Thompson, Janice M (Committee member) / Arizona State University (Publisher)
Created2011
Description
This paper describes six representative works by twentieth-century Chinese composers: Jian-Zhong Wang, Er-Yao Lin, Yi-Qiang Sun, Pei-Xun Chen, Ying-Hai Li, and Yi Chen, which are recorded by the author on the CD. The six pieces selected for the CD all exemplify traits of Nationalism, with or without Western influences. Of

This paper describes six representative works by twentieth-century Chinese composers: Jian-Zhong Wang, Er-Yao Lin, Yi-Qiang Sun, Pei-Xun Chen, Ying-Hai Li, and Yi Chen, which are recorded by the author on the CD. The six pieces selected for the CD all exemplify traits of Nationalism, with or without Western influences. Of the six works on the CD, two are transcriptions of the Han Chinese folk-like songs, one is a composition in the style of the Uyghur folk music, two are transcriptions of traditional Chinese instrumental music dating back to the eighteenth century, and one is an original composition in a contemporary style using folk materials. Two of the composers, who studied in the United States, were strongly influenced by Western compositional style. The other four, who did not study abroad, retained traditional Chinese style in their compositions. The pianistic level of difficulty in these six pieces varies from intermediate to advanced level. This paper includes biographical information for the six composers, background information on the compositions, and a brief analysis of each work. The author was exposed to these six pieces growing up, always believing that they are beautiful and deserve to be appreciated. When the author came to the United States for her studies, she realized that Chinese compositions, including these six pieces, were not sufficiently known to her peers. This recording and paper are offered in the hopes of promoting a wider familiarity with Chinese music and culture.
ContributorsLuo, Yali, D.M.A (Author) / Hamilton, Robert (Thesis advisor) / Campbell, Andrew (Committee member) / Pagano, Caio (Committee member) / Cosand, Walter (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2012
150273-Thumbnail Image.png
Description
The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as

The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as composers at the time of this study. They include Fan-Ling Su (b. 1955), Hwei-Lee Chang (b. 1956), Shyh-Ji Pan-Chew (b. 1957), and Kwang-I Ying (b. 1960). Detailed biographical information on the four composers is presented and discussed. In addition, the musical form and features of all solo piano works at all levels by the four composers are analyzed, and the musical characteristics of each composer's work are discussed. The biography of a fifth composer, Wei-Ho Dai (b. 1950), is also discussed but is placed in the Appendices because her piano music could not be located. This research paper is presented in six chapters: (1) Prologue; the life and music of (2) Fan-Ling Su, (3) Hwei-Lee Chang, (4) Shyh-Ji Pan-Chew, and (5) Kwang-I Ying; and (6) Conclusion. The Prologue provides an overview of the development of Western classical music in Taiwan, a review of extant literature on the selected composers and their music, and the development of piano music in Taiwan. The Conclusion is comprised of comparisons of the four composers' music, including their personal interests and preferences as exhibited in their music. For example, all of the composers have used atonality in their music. Two of the composers, Fan-Ling Su and Kwang-I Ying, openly apply Chinese elements in their piano works, while Hwei-Lee Chang tries to avoid direct use of the Chinese pentatonic scale. The piano works of Hwei-Lee Chang and Shyh-Ji Pan-Chew are chromatic and atonal, and show an economical usage of material. Biographical information on Wei-Ho Dai and an overview of Taiwanese history are presented in the Appendices.
ContributorsWang, Jinding (Author) / Pagano, Caio (Thesis advisor) / Campbell, Andrew (Committee member) / Humphreys, Jere T. (Committee member) / Meyer-Thompson, Janice (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsShi, Zhan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26