Matching Items (5)
136604-Thumbnail Image.png
Description
As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has

As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has designed and developed a prototype smartphone application targeting palliative care patients. The application collects symptom data from the patients and presents it to the doctors. This development project serves as a proof-of-concept for the application, and shows how such an application might look and function. Additionally, the project has revealed significant possibilities for the future of the application.
ContributorsGaney, David Howard (Author) / Balasooriya, Janaka (Thesis director) / Lipinski, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136464-Thumbnail Image.png
Description
Smartphone-based healthcare. It's becoming more real as technology advances, adding value to healthcare and opening the doors to more personalized medicine. The Medical Pal is a smartphone application that can track symptoms and analyze trends in the severity of those symptoms, alerting healthcare providers when there is a significant increase

Smartphone-based healthcare. It's becoming more real as technology advances, adding value to healthcare and opening the doors to more personalized medicine. The Medical Pal is a smartphone application that can track symptoms and analyze trends in the severity of those symptoms, alerting healthcare providers when there is a significant increase in the symptom severity. This is especially directed to the palliative patient, whose care is focused on managing symptoms and providing comfort. The HIPAA-compliant server used for the smartphone application was Catalyze.io and 40 Mayo Clinic Arizona palliative patients were surveyed on their smartphone usage to test the acceptance of this app in a clinical setting. A trial involving 9 simulated patients was conducted over a two week period to test the functionality of the app. A majority of surveyed patients (85%) expressed favor for the idea of a mobile ESAS, and the app was functioning, with the capability of displaying patient data on a healthcare provider's account. This project is intentionally a door-opener to an open field of opportunity for mobile health, symptom observation, and improvements in healthcare delivery.
ContributorsDao, Lelan Diep (Author) / Cortese, Denis (Thesis director) / Lipinski, Christopher (Committee member) / Fitch, Tom (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
133458-Thumbnail Image.png
Description
Glioma is a devastating, invasive form of brain cancer with a 36-month median overall survival. The highest grade tumors, glioblastomas, have an even shorter prognosis of about 15 months. A glioma often requires an intense combination of treatments including surgery, chemotherapy, and radiotherapy, often resulting in very damaging side effects.

Glioma is a devastating, invasive form of brain cancer with a 36-month median overall survival. The highest grade tumors, glioblastomas, have an even shorter prognosis of about 15 months. A glioma often requires an intense combination of treatments including surgery, chemotherapy, and radiotherapy, often resulting in very damaging side effects. Due to their sensitive location in the brain, which is often difficult to access because of the skull, gliomas are most often visualized using magnetic resonance imaging (MRI), a non-invasive imaging method. Because high grade gliomas (HGGs) are highly aggressive and recurrence is common, patients diagnosed with these tumors stand to significantly benefit from novel, advanced MRI techniques that can lead to better patient-specific tumor characterization and improved response assessment. Magnetic resonance elastography (MRE) is a MRI-based method that measures the mechanical properties of tissue, and has the potential to significantly enhance the ability to distinguish malignant vs. healthy brain tissue by determining spatial differences in physical stiffness. We investigated whether the addition of MRE to standard clinical glioma MRI protocols would provide a more accurate understanding of the extent of tumor invasion. Using routinely available T2-weighted and contrast enhancing T1-weighted clinical MRI images, the Swanson lab has developed the Proliferation-Invasion (PI) model of brain tumor growth. Using this model, we quantify the relative diffusion (D) and proliferation (�) of tumor cells as D/�. Clinical MRIs were segmented in order to parameterize the model and determine these tumor growth metrics for each patient in our retrospective study. Next, we compare these tumor growth metrics with MRE features of physical stiffness of malignant tissue to determine whether there are correlations with the PI model's kinetic parameters. We hypothesized that MRE stiffness measurements would be associated with the PI model of glioma growth and may provide additional patient-specific tumor characterization information useful for optimally choosing treatment and understanding treatment response. MRE has the potential to be a useful addition to the clinical management of glioma and be integral to further understanding tumor growth and invasiveness.
ContributorsYee, Sara (Author) / Swanson, Kristin (Thesis director) / Hu, Leland (Committee member) / Rickertson, Cassandra (Committee member) / Massey, Susan (Committee member) / Jackson, Pamela (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135938-Thumbnail Image.png
Description
Palliative care is a field that serves to benefit enormously from the introduction of mobile medical applications. Doctors at the Mayo Clinic intend to address a reoccurring dilemma, in which palliative care patients visit the emergency room during situations that are not urgent or life-threatening. Doing so unnecessarily

Palliative care is a field that serves to benefit enormously from the introduction of mobile medical applications. Doctors at the Mayo Clinic intend to address a reoccurring dilemma, in which palliative care patients visit the emergency room during situations that are not urgent or life-threatening. Doing so unnecessarily drains the hospital’s resources, and it prevents the patient’s physician from applying specialized care that would better suit the patient’s individual needs. This scenario is detrimental to all involved. A mobile medical application seeks to foster doctor-patient communication while simultaneously decreasing the frequency of these excessive E.R. visits. In order to provide a sufficient standard of usefulness and convenience, the design of such a mobile application must be tailored to accommodate the needs of palliative care patients. Palliative care is focused on establishing long-term comfort for people who are often terminally-ill, elderly, handicapped, or otherwise severely disadvantaged. Therefore, a UI intended for palliative care patients must be devoted to simplicity and ease of use. The application must also be robust enough that the user feels that they have been provided with enough capabilities. The majority of this paper is dedicated to overhauling an existing palliative care application, the product of a previous honors thesis project, and implementing a user interface that establishes a simple, positive, and advantageous environment. This is accomplished through techniques such as color-coding, optimizing page layout, increasing customization capabilities, and more. Above all else, this user interface is intended to make the patient’s experience satisfying and trouble-free. They should be able to log in, navigate the application’s features with a few taps of their finger, and log out — all without undergoing any frustration or difficulties.
ContributorsWilkes, Jarrett Matthew (Co-author) / Ganey, David (Co-author) / Dao, Lelan (Co-author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
164442-Thumbnail Image.png
Description
A patient's adherence to their treatment plan is crucial for management of chronic disease. The literature supports the fact that adherence is low, often at or below 50%. In order to adhere to one’s treatment plan, a patient must have accurate recall of this plan. A large body of research

A patient's adherence to their treatment plan is crucial for management of chronic disease. The literature supports the fact that adherence is low, often at or below 50%. In order to adhere to one’s treatment plan, a patient must have accurate recall of this plan. A large body of research has established that patient recall is poor, and there is a growing body of research examining ways to improve recall, and thus, treatment outcomes. The present study examines differing delivery methods of the After Visit Summary in order to improve adherence, treatment outcomes, and patient satisfaction. It also evaluates the impact of visit modality (virtual vs. face-to-face visits) on patient recall for treatment information.
ContributorsSutherland, Isabella (Author) / Hartwell, Leland (Thesis director) / Hollmann, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05