Matching Items (2)
Filtering by

Clear all filters

147616-Thumbnail Image.png
Description

The Fourier representation of a signal or image is equivalent to its native representation in the sense that the signal or image can be reconstructed exactly from its Fourier transform. The Fourier transform is generally complex-valued, and each value of the Fourier spectrum thus possesses both magnitude and phase. Degradation

The Fourier representation of a signal or image is equivalent to its native representation in the sense that the signal or image can be reconstructed exactly from its Fourier transform. The Fourier transform is generally complex-valued, and each value of the Fourier spectrum thus possesses both magnitude and phase. Degradation of signals and images when Fourier phase information is lost or corrupted has been studied extensively in the signal processing research literature, as has reconstruction of signals and images using only Fourier magnitude information. This thesis focuses on the case of images, where it examines the visual effect of quantifiable levels of Fourier phase loss and, in particular, studies the merits of introducing varying degrees of phase information in a classical iterative algorithm for reconstructing an image from its Fourier magnitude.

ContributorsShi, Yiting (Author) / Cochran, Douglas (Thesis director) / Jones, Scott (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
192256-Thumbnail Image.png
Description
Recent satellite and remote sensing innovations have led to an eruption in the amount and variety of geospatial ice data available to the public, permitting in-depth study of high-definition ice imagery and digital elevation models (DEMs) for the goal of safe maritime navigation and climate monitoring. Few researchers have investigated

Recent satellite and remote sensing innovations have led to an eruption in the amount and variety of geospatial ice data available to the public, permitting in-depth study of high-definition ice imagery and digital elevation models (DEMs) for the goal of safe maritime navigation and climate monitoring. Few researchers have investigated texture in optical imagery as a predictive measure of Arctic sea ice thickness due to its cloud pollution, uniformity, and lack of distinct features that make it incompatible with standard feature descriptors. Thus, this paper implements three suitable ice texture metrics on 1640 Arctic sea ice image patches, namely (1) variance pooling, (2) gray-level co-occurrence matrices (GLCMs), and (3) textons, to assess the feasibly of a texture-based ice thickness regression model. Results indicate that of all texture metrics studied, only one GLCM statistic, namely homogeneity, bore any correlation (0.15) to ice freeboard.
ContributorsWarner, Hailey (Author) / Cochran, Douglas (Thesis director) / Jayasuria, Suren (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05