Matching Items (7)
Filtering by

Clear all filters

151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151544-Thumbnail Image.png
Description
Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse

Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it is important to design dictionaries that can model the entire data space and not just the samples considered. By exploiting the relation of dictionary learning to 1-D subspace clustering, a multilevel dictionary learning algorithm is developed, and it is shown to outperform conventional sparse models in compressed recovery, and image denoising. Theoretical aspects of learning such as algorithmic stability and generalization are considered, and ensemble learning is incorporated for effective large scale learning. In addition to building strategies for efficiently implementing 1-D subspace clustering, a discriminative clustering approach is designed to estimate the unknown mixing process in blind source separation. By exploiting the non-linear relation between the image descriptors, and allowing the use of multiple features, sparse methods can be made more effective in recognition problems. The idea of multiple kernel sparse representations is developed, and algorithms for learning dictionaries in the feature space are presented. Using object recognition experiments on standard datasets it is shown that the proposed approaches outperform other sparse coding-based recognition frameworks. Furthermore, a segmentation technique based on multiple kernel sparse representations is developed, and successfully applied for automated brain tumor identification. Using sparse codes to define the relation between data samples can lead to a more robust graph embedding for unsupervised clustering. By performing discriminative embedding using sparse coding-based graphs, an algorithm for measuring the glomerular number in kidney MRI images is developed. Finally, approaches to build dictionaries for local sparse coding of image descriptors are presented, and applied to object recognition and image retrieval.
ContributorsJayaraman Thiagarajan, Jayaraman (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
151537-Thumbnail Image.png
Description
Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses

Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses on the study of sparse models and their interplay with modern machine learning techniques such as manifold, ensemble and graph-based methods, along with their applications in image analysis and recovery. By considering graph relations between data samples while learning sparse models, graph-embedded codes can be obtained for use in unsupervised, supervised and semi-supervised problems. Using experiments on standard datasets, it is demonstrated that the codes obtained from the proposed methods outperform several baseline algorithms. In order to facilitate sparse learning with large scale data, the paradigm of ensemble sparse coding is proposed, and different strategies for constructing weak base models are developed. Experiments with image recovery and clustering demonstrate that these ensemble models perform better when compared to conventional sparse coding frameworks. When examples from the data manifold are available, manifold constraints can be incorporated with sparse models and two approaches are proposed to combine sparse coding with manifold projection. The improved performance of the proposed techniques in comparison to sparse coding approaches is demonstrated using several image recovery experiments. In addition to these approaches, it might be required in some applications to combine multiple sparse models with different regularizations. In particular, combining an unconstrained sparse model with non-negative sparse coding is important in image analysis, and it poses several algorithmic and theoretical challenges. A convex and an efficient greedy algorithm for recovering combined representations are proposed. Theoretical guarantees on sparsity thresholds for exact recovery using these algorithms are derived and recovery performance is also demonstrated using simulations on synthetic data. Finally, the problem of non-linear compressive sensing, where the measurement process is carried out in feature space obtained using non-linear transformations, is considered. An optimized non-linear measurement system is proposed, and improvements in recovery performance are demonstrated in comparison to using random measurements as well as optimized linear measurements.
ContributorsNatesan Ramamurthy, Karthikeyan (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Karam, Lina (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
150530-Thumbnail Image.png
Description
With increased usage of green energy, the number of photovoltaic arrays used in power generation is increasing rapidly. Many of the arrays are located at remote locations where faults that occur within the array often go unnoticed and unattended for large periods of time. Technicians sent to rectify the faults

With increased usage of green energy, the number of photovoltaic arrays used in power generation is increasing rapidly. Many of the arrays are located at remote locations where faults that occur within the array often go unnoticed and unattended for large periods of time. Technicians sent to rectify the faults have to spend a large amount of time determining the location of the fault manually. Automated monitoring systems are needed to obtain the information about the performance of the array and detect faults. Such systems must monitor the DC side of the array in addition to the AC side to identify non catastrophic faults. This thesis focuses on two of the requirements for DC side monitoring of an automated PV array monitoring system. The first part of the thesis quantifies the advantages of obtaining higher resolution data from a PV array on detection of faults. Data for the monitoring system can be gathered for the array as a whole or from additional places within the array such as individual modules and end of strings. The fault detection rate and the false positive rates are compared for array level, string level and module level PV data. Monte Carlo simulations are performed using PV array models developed in Simulink and MATLAB for fault and no fault cases. The second part describes a graphical user interface (GUI) that can be used to visualize the PV array for module level monitoring system information. A demonstration GUI is built in MATLAB using data obtained from a PV array test facility in Tempe, AZ. Visualizations are implemented to display information about the array as a whole or individual modules and locate faults in the array.
ContributorsKrishnan, Venkatachalam (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Ayyanar, Raja (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
151092-Thumbnail Image.png
Description
Recent advances in camera architectures and associated mathematical representations now enable compressive acquisition of images and videos at low data-rates. While most computer vision applications of today are composed of conventional cameras, which collect a large amount redundant data and power hungry embedded systems, which compress the collected data for

Recent advances in camera architectures and associated mathematical representations now enable compressive acquisition of images and videos at low data-rates. While most computer vision applications of today are composed of conventional cameras, which collect a large amount redundant data and power hungry embedded systems, which compress the collected data for further processing, compressive cameras offer the advantage of direct acquisition of data in compressed domain and hence readily promise to find applicability in computer vision, particularly in environments hampered by limited communication bandwidths. However, despite the significant progress in theory and methods of compressive sensing, little headway has been made in developing systems for such applications by exploiting the merits of compressive sensing. In such a setting, we consider the problem of activity recognition, which is an important inference problem in many security and surveillance applications. Since all successful activity recognition systems involve detection of human, followed by recognition, a potential fully functioning system motivated by compressive camera would involve the tracking of human, which requires the reconstruction of atleast the initial few frames to detect the human. Once the human is tracked, the recognition part of the system requires only the features to be extracted from the tracked sequences, which can be the reconstructed images or the compressed measurements of such sequences. However, it is desirable in resource constrained environments that these features be extracted from the compressive measurements without reconstruction. Motivated by this, in this thesis, we propose a framework for understanding activities as a non-linear dynamical system, and propose a robust, generalizable feature that can be extracted directly from the compressed measurements without reconstructing the original video frames. The proposed feature is termed recurrence texture and is motivated from recurrence analysis of non-linear dynamical systems. We show that it is possible to obtain discriminative features directly from the compressed stream and show its utility in recognition of activities at very low data rates.
ContributorsKulkarni, Kuldeep Sharad (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
136804-Thumbnail Image.png
Description
The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook

The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook design techniques to discover how applicable published interface design concepts are in practice. Four variations of a software package were deployed to end users. Each variation contained different design techniques. Surveyed users responded positively to interface design practices that were consistent and easy to learn. This followed textbook expectations. Users however responded poorly to customization options, an important feature according to textbook material. The study made conservative changes to the four interface variations provided to end-users. A more liberal approach may have yielded additional results.
ContributorsSmith, Andrew David (Author) / Nakamura, Mutsumi (Thesis director) / Gottesman, Aaron (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
155540-Thumbnail Image.png
Description
Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes.





Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo vision based, in-line ball height and coplanarity inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging setup and calibration, ball height estimation and substrate coplanarity calculation are presented with novel stereo vision methods. The results of the proposed method are evaluated in a measurement capability analysis (MCA) procedure and compared with the ground-truth obtained by an existing laser scanning tool and an existing confocal inspection tool. The proposed system outperforms existing inspection tools in terms of accuracy and stability.



In a rectified stereo vision system, stereo matching methods can be categorized into global methods and local methods. Local stereo methods are more suitable for real-time processing purposes with competitive accuracy as compared with global methods. This work proposes a stereo matching method based on sparse locally adaptive cost aggregation. In order to reduce outlier disparity values that correspond to mis-matches, a novel sparse disparity subset selection method is proposed by assigning a significance status to candidate disparity values, and selecting the significant disparity values adaptively. An adaptive guided filtering method using the disparity subset for refined cost aggregation and disparity calculation is demonstrated. The proposed stereo matching algorithm is tested on the Middlebury and the KITTI stereo evaluation benchmark images. A performance analysis of the proposed method in terms of the I0 norm of the disparity subset is presented to demonstrate the achieved efficiency and accuracy.
ContributorsLi, Jinjin (Author) / Karam, Lina (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Patel, Nital (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2017