Matching Items (389)
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
134291-Thumbnail Image.png
Description
Orbiting space debris is an active issue that affects the capability of space launch for future satellites, probes, and space shuttles, and it will become a nearly insurmountable problem without action. Debris of varying sizes and speeds orbit the Earth at a range of heights above the atmosphere and need

Orbiting space debris is an active issue that affects the capability of space launch for future satellites, probes, and space shuttles, and it will become a nearly insurmountable problem without action. Debris of varying sizes and speeds orbit the Earth at a range of heights above the atmosphere and need to be removed to avoid damage to crucial equipment of active orbiting satellites including the International Space Station. Finding a feasible solution to space debris removal requires that several facets be covered to become a reality; these include being aware of the problem in magnitude and source. This literature assessment covers the magnitude of space debris in low-earth and geosynchronous orbit as well as collision events which have increased the amount of space debris. There have been efforts made by several space agencies to control the amount of space debris added to orbit by current and future launches over the last decade \u2014 serving as a temporary fix before removal can be executed. This paper explores known removal efforts through mitigation, projects conceived and tested by DARPA, related space policies and laws, CubeSat technology, and the cataloguing of known space debris. To make space debris removal a reality, roadblocks need to be removed to acquire permission from states or countries for space missions. For example, these restrictions are in place to protect the assets of several countries and organizations. Guidelines set to curb the growth of space debris fail to prevent the growth due to the restrictions for ownership rights making them not as effective. This paper covers space policy and laws, the economy, satellite ownership, international conflict, status of space debris, and the overall feasibility of space debris removal. It will then discuss currently proposed solutions for the removal of space debris. Finally, this paper attempts to weight the advantages and disadvantages of the idea that space debris removal should include the opportunity to recycle materials. For example, defunct satellites and other discarded space crafts could be used for future launches. It will conclude with a personal exploration of what materials can be recycled, what chemical processes can be used to break down materials, and how to combine recycling and chemical processes for space-based recycling stations between Earth and the moon. The overall question that drives the search for making space debris removal a reality is whether it is feasible in multiple areas including technologically, legally, monetarily, and physically.
ContributorsBreden, Elizabeth Catherine (Author) / Foy, Joseph (Thesis director) / Thoesen, Andrew (Committee member) / Maximon, Leonard (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133417-Thumbnail Image.png
Description
For this Honors Thesis, I will present research on the history, current state, and future (10years) of Telecommunication focusing on the infrastructure. I will research and analyze the trend of technological development that is leading to telecommunication being more readily available in remote locations through new infrastructure due to satellite

For this Honors Thesis, I will present research on the history, current state, and future (10years) of Telecommunication focusing on the infrastructure. I will research and analyze the trend of technological development that is leading to telecommunication being more readily available in remote locations through new infrastructure due to satellite technology. This will include an analysis of the competitive landscape in the telecommunication and Satellite Technology Industry including an analysis of where opportunity lies in the future industry for new businesses to emerge
ContributorsHornsby, Luke Austin (Author) / Naumann, Gary (Thesis director) / Poddar, Rahul (Committee member) / Department of Supply Chain Management (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133566-Thumbnail Image.png
Description
Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the research will be able to work on ensuring the accuracy of ground tests. This contribution allows for future research on improving active pixel sensor performance.
ContributorsDotson, Breydan Lane (Author) / White, Daniel (Thesis director) / Jansen, Rolf (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
ContributorsOftedahl, Paul (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-29
ContributorsMarshall, Kimberly (Performer) / Meszler, Alexander (Performer) / Yatso, Toby (Narrator) / ASU Library. Music Library (Publisher)
Created2018-09-16
ContributorsTaylor, Karen Stephens (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-21
ContributorsCramer, Craig (Performer) / ASU Library. Music Library (Publisher)
Created1997-02-16