Matching Items (3)
Filtering by

Clear all filters

150701-Thumbnail Image.png
Description
The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties

The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties are at the forefront of organic solar energy conversion research. In the work presented herein, porphyrin and organometallic dyes with widely-varied properties were studied for solar energy applications. In one project, porphyrins and porphyrin-fullerene dyads with aniline-like features were polymerized via electrochemical methods into semiconductive thin films. These were shown to have high visible light absorption and stable physical and electrochemical properties. However, experimentation using porphyrin polymer films as both the light absorber and semiconductor in a photoelectrochemical cell showed relatively low efficiency of converting absorbed solar energy into electricity. In separate work, tetra-aryl porphyrin derivatives were examined in conjunction with wide-bandgap semiconductive oxides TiO2 and SnO2. Carboxylic acid-, phosphonic acid-, and silatrane-functionalized porphyrins were obtained or synthesized for attachment to the metal oxide species. Electrochemical, photophysical, photoelectrochemical, and surface stability studies of the porphyrins were performed for comparative purposes. The order of surface linkage stability on TiO2 in alkaline conditions, from most stable to least, was determined to be siloxane > phosphonate > carboxylate. Finally, porphyrin dimers fused via their meso and beta positions were synthesized using a chemical oxidative synthesis with a copper(II) oxidant. The molecules exhibit strong absorption in the visible and near-infrared spectral regions as well as interesting electrochemical properties suggesting possible applications in light harvesting and redox catalysis.
ContributorsBrennan, Bradley J (Author) / Gust, Devens (Thesis advisor) / Moore, Thomas A. (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2012
156914-Thumbnail Image.png
Description
The molecular modification of semiconductors has applications in energy

conversion and storage, including artificial photosynthesis. In nature, the active sites of

enzymes are typically earth-abundant metal centers and the protein provides a unique

three-dimensional environment for effecting catalytic transformations. Inspired by this

biological architecture, a synthetic methodology using surface-grafted polymers with

discrete chemical recognition sites

The molecular modification of semiconductors has applications in energy

conversion and storage, including artificial photosynthesis. In nature, the active sites of

enzymes are typically earth-abundant metal centers and the protein provides a unique

three-dimensional environment for effecting catalytic transformations. Inspired by this

biological architecture, a synthetic methodology using surface-grafted polymers with

discrete chemical recognition sites for assembling human-engineered catalysts in three-dimensional

environments is presented. The use of polymeric coatings to interface cobalt-containing

catalysts with semiconductors for solar fuel production is introduced in

Chapter 1. The following three chapters demonstrate the versatility of this modular

approach to interface cobalt-containing catalysts with semiconductors for solar fuel

production. The catalyst-containing coatings are characterized through a suite of

spectroscopic techniques, including ellipsometry, grazing angle attenuated total reflection

Fourier transform infrared spectroscopy (GATR-FTIR) and x-ray photoelectron (XP)

spectroscopy. It is demonstrated that the polymeric interface can be varied to control the

surface chemistry and photoelectrochemical response of gallium phosphide (GaP) (100)

electrodes by using thin-film coatings comprising surface-immobilized pyridyl or

imidazole ligands to coordinate cobaloximes, known catalysts for hydrogen evolution.

The polymer grafting chemistry and subsequent cobaloxime attachment is applicable to

both the (111)A and (111)B crystal face of the gallium phosphide (GaP) semiconductor,

providing insights into the surface connectivity of the hard/soft matter interface and

demonstrating the applicability of the UV-induced immobilization of vinyl monomers to

a range of GaP crystal indices. Finally, thin-film polypyridine surface coatings provide a

molecular interface to assemble cobalt porphyrin catalysts for hydrogen evolution onto

GaP. In all constructs, photoelectrochemical measurements confirm the hybrid

photocathode uses solar energy to power reductive fuel-forming transformations in

aqueous solutions without the use of organic acids, sacrificial chemical reductants, or

electrochemical forward biasing.
ContributorsBeiler, Anna Mary (Author) / Moore, Gary F. (Thesis advisor) / Moore, Thomas A. (Thesis advisor) / Redding, Kevin E. (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2018
157643-Thumbnail Image.png
Description
Redox enzymes represent a big group of proteins and they serve as catalysts for

biological processes that involve electron transfer. These proteins contain a redox center

that determines their functional properties, and hence, altering this center or incorporating

non-biological redox cofactor to proteins has been used as a means to generate redox

proteins with

Redox enzymes represent a big group of proteins and they serve as catalysts for

biological processes that involve electron transfer. These proteins contain a redox center

that determines their functional properties, and hence, altering this center or incorporating

non-biological redox cofactor to proteins has been used as a means to generate redox

proteins with desirable activities for biological and chemical applications. Porphyrins and

Fe-S clusters are among the most common cofactors that biology employs for electron

transfer processes and there have been many studies on potential activities that they offer

in redox reactions.

In this dissertation, redox activity of Fe-S clusters and catalytic activity of porphyrins

have been explored with regard to protein scaffolds. In the first part, modular property of

repeat proteins along with previously established protein design principles have been

used to incorporate multiple Fe-S clusters within the repeat protein scaffold. This study is

the first example of exploiting a single scaffold to assemble a determined number of

clusters. In exploring the catalytic activity of transmetallated porphyrins, a cobalt-porphyrin

binding protein known as cytochrome c was employed in a water oxidation

photoelectrochemical cell. This system can be further coupled to a hydrogen production

electrode to achieve a full water splitting tandem cell. Finally, a cobalt-porphyrin binding

protein known as cytochrome b562 was employed to design a whole cell catalysis system,

and the activity of the surface-displayed protein for hydrogen production was explored

photochemically. This system can further be expanded for directed evolution studies and

high-throughput screening.
ContributorsBahrami Dizicheh, Zahra (Author) / Ghirlanda, Giovanna (Thesis advisor) / Allen, James P. (Committee member) / Seo, Dong Kyun (Committee member) / Arizona State University (Publisher)
Created2019