Matching Items (8)

133395-Thumbnail Image.png

MicroRNA Function and Role in Splenocyte ST2 Expression via Cellular Transfection

Description

Stroke is a devastating disease that affects thousands of individuals each year. Stroke, specifically cerebral ischemia, and immune responses are important areas of study and focus. Previous studies on stroke

Stroke is a devastating disease that affects thousands of individuals each year. Stroke, specifically cerebral ischemia, and immune responses are important areas of study and focus. Previous studies on stroke in mouse models had shown the upregulation of a specific micro-RNA: miR-1224. We hypothesized that miR-1224 was responsible for the regulation of the ST2 receptor protein’s expression. We performed cellular transfection on murine splenocytes with four different miRNAs—miR-1224-mimic, miR-1224-inhibitor, miR-451-mimic, and a control. We predicted that transfection with 1224m would decrease ST2 expression, while transfection with 1224i would increase ST2 expression. Two complete trials were run, and analysis of the results included RT-PCR of both miRNA samples and mRNA samples to confirm transfection and controlled transcription. Reverse transcription and qPCR of miRNA was done in order to confirm that transfection was in fact successful. Reverse transcription and qPCR of the mRNA was done in order to confirm that ST2 mRNA was not altered; this allowed us to attribute any changes in ST2 protein levels to miRNA interactions, as the mRNA levels were consistent. Western blotting was done in order to assess relative protein content. We found that transfection with 1224m slightly decreased ST2 expression and transfection with 1224i slightly increased ST2 expression, however, after assessing the p-values through statistical analyses, neither difference was significant. As such, our hypothesis was rejected as it is not evident that miR-1224 plays a significant role on ST2 gene expression. Future studies are needed in order to analyze alternate protein targets to fully assess the role of miR-1224.

Contributors

Agent

Created

Date Created
  • 2018-05

136053-Thumbnail Image.png

Molecular Engineering of Novel Polymeric Agents for Targeted Cancer Gene Therapy

Description

Abstract Molecular Engineering of Novel Polymeric Agents for Targeted Cancer Gene Therapy Dana Matthews Cancer gene cell therapy is a strategy that involves the administration of genes for correcting the

Abstract Molecular Engineering of Novel Polymeric Agents for Targeted Cancer Gene Therapy Dana Matthews Cancer gene cell therapy is a strategy that involves the administration of genes for correcting the effect of mutated cancer cells in order to induce tumor cell death. In particular, genes that encode for pro-apoptotic proteins can result in death of tumor cells. Prostate cancer is a very common cancer among males in America, and as highly destructive chemotherapy and radiation are generally the only treatments available once the cancer has metastasized, there is a need for the development of treatments that can specifically target and kill prostate cancer cells, while demonstrating low toxicity to other tissue. This experiment will attempt to create such a treatment through gene therapy techniques. The parallel synthesis and DNA binding affinity assay utilized in these experiments have produced a polymer that surpasses pEI-25, a gene delivery polymer standard, in both transfection efficacy and low cytotoxicity and trafficking of polyplexes in the cell, and finding methods to increase the transfection efficacy and specificity of polyplexes for PC3-PSMA cells.

Contributors

Agent

Created

Date Created
  • 2008-12

Rotating live mammalian cells free in media using spatial light modulator (SLM)-generated optical tweezers

Description

In the frenzy of next generation genetic sequencing and proteomics, single-cell level analysis has begun to find its place in the crux of personalized medicine and cancer research. Single live

In the frenzy of next generation genetic sequencing and proteomics, single-cell level analysis has begun to find its place in the crux of personalized medicine and cancer research. Single live cell 3D imaging technology is one of the most useful ways of providing spatial and morphological details inside living single cells. It provides a window to uncover the mysteries of protein structure and folding, as well as genetic expression over time, which will tremendously improve the state of the fields of biophysics and biomedical research. This thesis project specifically demonstrates a method for live single cell rotation required to image them in the single live cell CT imaging platform. The method of rotation proposed in this thesis uses dynamic optical traps generated by a phase-only spatial light modulator (SLM) to exert torque on a single mammalian cell. Laser patterns carrying the holographic information of the traps are delivered from the SLM through a transformation telescope into the objective lens and onto its focal plane to produce the desired optical trap "image". The phase information in the laser patterns being delivered are continuously altered by the SLM such that the structure of the wavefront produces two foci at opposite edges of the cell of interest that each moves along the circumference of the cell in opposite axial directions. Momentum generated by the motion of the foci exerts a torque on the cell, causing it to rotate. The viability of this method was demonstrated experimentally. Software was written using LabVIEW to control the display panel of the SLM.

Contributors

Agent

Created

Date Created
  • 2013

Optimization and parametric characterization of a hydrodynamic microvortex chip for single cell rotation

Description

Volumetric cell imaging using 3D optical Computed Tomography (cell CT) is advantageous for identification and characterization of cancer cells. Many diseases arise from genomic changes, some of which are manifest

Volumetric cell imaging using 3D optical Computed Tomography (cell CT) is advantageous for identification and characterization of cancer cells. Many diseases arise from genomic changes, some of which are manifest at the cellular level in cytostructural and protein expression (functional) features which can be resolved, captured and quantified in 3D far more sensitively and specifically than in traditional 2D microscopy. Live single cells were rotated about an axis perpendicular to the optical axis to facilitate data acquisition for functional live cell CT imaging. The goal of this thesis research was to optimize and characterize the microvortex rotation chip. Initial efforts concentrated on optimizing the microfabrication process in terms of time (6-8 hours v/s 12-16 hours), yield (100% v/s 40-60%) and ease of repeatability. This was done using a tilted exposure lithography technique, as opposed to the backside diffuser photolithography (BDPL) method used previously (Myers 2012) (Chang and Yoon 2004). The fabrication parameters for the earlier BDPL technique were also optimized so as to improve its reliability. A new, PDMS to PDMS demolding process (soft lithography) was implemented, greatly improving flexibility in terms of demolding and improving the yield to 100%, up from 20-40%. A new pump and flow sensor assembly was specified, tested, procured and set up, allowing for both pressure-control and flow-control (feedback-control) modes; all the while retaining the best features of a previous, purpose-built pump assembly. Pilot experiments were performed to obtain the flow rate regime required for cell rotation. These experiments also allowed for the determination of optimal trapezoidal neck widths (opening to the main flow channel) to be used for cell rotation characterization. The optimal optical trap forces were experimentally estimated in order to minimize the required optical power incident on the cell. Finally, the relationships between (main channel) flow rates and cell rotation rates were quantified for different trapezoidal chamber dimensions, and at predetermined constant values of laser trapping strengths, allowing for parametric characterization of the system.

Contributors

Agent

Created

Date Created
  • 2013

151177-Thumbnail Image.png

A chip for hydrodynamic microvortical rotation of live single cells

Description

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.

Contributors

Agent

Created

Date Created
  • 2012

155112-Thumbnail Image.png

Single cell RT-qPCR on 3D cell spheroids

Description

A single cell is the very fundamental element in an organism; however, it contains the most complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, it is

A single cell is the very fundamental element in an organism; however, it contains the most complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, it is a necessity to study stochastic gene expression in order to discover the biosignatures at the single-cell level. The heterogeneous gene expression of single cells from an isogenic cell population has already been studied for years. Yet to date, single-cell studies have been confined in a fashion of analyzing isolated single cells or a dilution of cells from the bulk-cell populations. These techniques or devices are limited by either the mechanism of cell lysis or the difficulties to target specific cells without harming neighboring cells.

This dissertation presents the development of a laser lysis chip combined with a two-photon laser system to perform single-cell lysis of single cells in situ from three-dimensional (3D) cell spheroids followed by analysis of the cell lysate with two-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The 3D spheroids were trapped in a well in the custom-designed laser lysis chip. Next, each single cell of interest in the 3D spheroid was identified and lysed one at a time utilizing a two-photon excited laser. After each cell lysis, the contents inside the target cell were released to the surrounding media and carried out to the lysate collector. Finally, the gene expression of each individual cell was measured by two-step RT-qPCR then spatially mapped back to its original location in the spheroids to construct a 3D gene expression map.

This novel technology and approach enables multiple gene expression measurements in single cells of multicellular organisms as well as cell-to-cell heterogeneous responses to the environment with spatial recognition. Furthermore, this method can be applied to study precancerous tissues for a better understanding of cancer progression and for identifying early tumor development.

Contributors

Agent

Created

Date Created
  • 2016

152156-Thumbnail Image.png

Degeneration in miniature: history of cell death and aging research in the twentieth century

Description

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.

Contributors

Agent

Created

Date Created
  • 2013

Optimizing micro-vortex chamber for living single cell rotation

Description

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.

Contributors

Agent

Created

Date Created
  • 2011