Matching Items (7)
Filtering by

Clear all filters

133345-Thumbnail Image.png
Description
The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase

The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase the dosage of currently prescribed antibiotics. This study attempted to combat two forms of antibiotic resistance. The first is the AcrAB efflux pump which is able to pump antibiotics out of the cell. The second is the biofilms that E. coli can form. By using an inhibitor, the pump should be unable to rid itself of an antibiotic. On the other hand, using Tween allows for biofilm formation to either be disrupted or for the biofilm to be dissolved. By combining these two chemicals with an antibiotic that the efflux pump is known to expel, low concentrations of each chemical should result in an equivalent or greater effect on bacteria compared to any one chemical in higher concentrations. To test this hypothesis a 96 well plate BEC screen test was performed. A range of antibiotics were used at various concentrations and with varying concentrations of both Tween and the inhibitor to find a starting point. Following this, Erythromycin and Ciprofloxacin were picked as the best candidates and the optimum range of the antibiotic, Tween, and inhibitor were established. Finally, all three chemicals were combined to observe the effects they had together as opposed to individually or paired together. From the results of this experiment several conclusions were made. First, the inhibitor did in fact increase the effectiveness of the antibiotic as less antibiotic was needed if the inhibitor was present. Second, Tween showed an ability to prevent recovery in the MBEC reading, showing that it has the ability to disrupt or dissolve biofilms. However, Tween also showed a noticeable decrease in effectiveness in the overall treatment. This negative interaction was unable to be compensated for when using the inhibitor and so the hypothesis was proven false as combining the three chemicals led to a less effective treatment method.
ContributorsPetrovich Flynn, Chandler James (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Perkins, Kim (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135341-Thumbnail Image.png
Description
The mechanisms of extracellular respiration in Geobacter sulfurreducens, commonly considered to be a model organism for anode respiration, are yet to be completely understood. The interplay between electron and proton transport especially could be a key to gaining further insights. One way to investigate the mechanisms of extracellular respiration under

The mechanisms of extracellular respiration in Geobacter sulfurreducens, commonly considered to be a model organism for anode respiration, are yet to be completely understood. The interplay between electron and proton transport especially could be a key to gaining further insights. One way to investigate the mechanisms of extracellular respiration under varying environmental conditions is by analyzing the electrochemical response of the biofilm with respect to pH, buffer concentrations, and acetate concentrations. I seek to increase the understanding of the electrochemical response of the G. sulfurreducens biofilm through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques in concert with chronoamperometry. I used Geobacter sulfurreducens PCA biofilms in single-chamber electrochemical cells (approximately 100 mL volume) with a small gold working electrode (3.14 mm2). I observed limitations in the initial methods used for media replacement. I tracked changes in the CV data, such as EKA (midpoint potential), as a function of pH and buffer concentration. The media replacement method developed demonstrates success in pH experiments that will be transferrable to other environmental conditions to study electron transport. The experiments revealed that the clarity of data collected is dependent on the quality of the biofilm. A high quality biofilm is characterized by a high current density and normal growth behavior. The general trends seen in these experiments are that as pH increases the potential decreases, and as buffer concentration increases the potential decreases and pH increases. Acetate-free conditions in the reactor were unable to be achieved as characterized by non-zero current densities in the acetate-free experiments.
ContributorsHolzer, Denton Gene (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Yoho, Rachel (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136359-Thumbnail Image.png
Description
Bacteria with antibiotic resistance are becoming a growing concern as the number of infections they are causing continue to increase. Many potential solutions are being researched in order to combat these pathogens. One such microbe is Pseudomonas aeruginosa, which causes acute and chronic human infections. It frequently colonizes the lungs

Bacteria with antibiotic resistance are becoming a growing concern as the number of infections they are causing continue to increase. Many potential solutions are being researched in order to combat these pathogens. One such microbe is Pseudomonas aeruginosa, which causes acute and chronic human infections. It frequently colonizes the lungs of cystic fibrosis patients and is deadly. For these reasons, P. aeruginosa has been heavily studied in order to determine a solution to antibiotic resistance. One possible solution is the development of synbodies, which have been developed at the Biodesign Institute at Arizona State University. Synbodies are constructed from peptides that have antibacterial activity and were determined to have specificity for a target bacterium. These synbodies were tested in this study to determine whether or not some of them are able to inhibit P. aeruginosa growth. P. aeruginosa can also form multicellular communities called biofilms and these are known to cause approximately 65% of all human infections. After conducting minimum inhibitory assays, the efficacy of certain peptides and synbodies against biofilm inhibition was assessed. A recent study has shown that low concentrations of a specific peptide can cause biofilm disruption, where the biofilm structure breaks apart and the cells within it disperse into the supernatant. Taking into account this study and peptide data regarding biofilm inhibition from Dr. Aurélie Crabbé’s lab, screened peptides were tested against biofilm to see if dispersion would occur.
Created2015-05
136244-Thumbnail Image.png
Description
As a major cause of nosocomial infections, biofilms such as those caused by Staphylococcus aureus and Staphylococcus epidermidis pose large concerns in the field of healthcare due to their extreme durability and resistance to treatment. While all biofilms grow similarly in a series of three stages: 1. Adhesion 2. Maturation

As a major cause of nosocomial infections, biofilms such as those caused by Staphylococcus aureus and Staphylococcus epidermidis pose large concerns in the field of healthcare due to their extreme durability and resistance to treatment. While all biofilms grow similarly in a series of three stages: 1. Adhesion 2. Maturation 3. Dispersal, Staphylococcal species such as S. aureus and S. epidermidis make use of unique growth factors in order to form prolific and durable biofilms. Due to the prevalence and risks associated with bacteria, many antibacterial methods have been created to treat bacterial infections. Although many antibacterial methods exist, there is still a great need for additional and more effective methods to treat and prevent serious bacterial infections associated with biofilm growth, because incidences of bacterial infection and resistance, especially in medical settings, are on the rise. In recent research, the exotoxin tolaasin, produced by the bacterium Pseudomonas tolaasii has briefly been shown to exhibit antibacterial effects. Based on previous research and tolaasin's observed pore forming and detergent properties, it is hypothesized that tolaasin will disrupt and prevent staphylococcal biofilm growth either independently or synergistically with existing antibiotics. If this is confirmed, tolaasin may have major implications within the future of healthcare, particularly in the field of antibiotics. In order to optimally use tolaasin as an anti-biofilm agent, potential anti-biofilm applications would aim to prevent and treat biofilm infections at the most common sites of biofilm growth such as catheters, medical instruments, implanted medical devices, and surgical sites. In addition, under the assumption that tolaasin will be found effective in inhibiting biofilm growth and infection, this thesis proposes future anti-biofilm technologies that could use tolaasin as an anti-biofilm agent in order to prevent biofilms and associated infections. While there are many potential and promising ways that tolaasin could be used as an anti-biofilm agent in the future, there are still possible limitations that would need to be investigated through further research before these applications can come to fruition. Ultimately, if future research successfully determines that tolaasin can be used to make anti-biofilm technologies that are biocompatible, durable, and effective, then technologies using tolaasin as an anti-biofilm agent may more effectively ensure sterility of medical devices and prevent bacterial biofilms and infections, and may eventually save lives.
ContributorsCoumans, Hanna Jo (Author) / Stout, Valerie (Thesis director) / Cabirac, Gary (Committee member) / Muralinath, Maneesha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
Staphylococcus aureus and Staphylococcus epidermidis are among the most common causes of hospital-acquired infections5, 7, 8. Despite the advancements in modern antimicrobials, infections from these organisms can be very difficult to treat, and equally as difficult to prevent 6,7. These organisms’ abilities to form biofilms are directly related to their

Staphylococcus aureus and Staphylococcus epidermidis are among the most common causes of hospital-acquired infections5, 7, 8. Despite the advancements in modern antimicrobials, infections from these organisms can be very difficult to treat, and equally as difficult to prevent 6,7. These organisms’ abilities to form biofilms are directly related to their abilities to cause infections. In biofilms, the staphylococcal species can survive antibiotics and immune responses much better than planktonic cells7. Tolaasin—a toxin and natural biosurfactant produced by P. tolaasii—has been briefly tested against biofilm formation, and the results suggested that it could have inhibitory effects. In order to further confirm and expand upon this potentially useful data, additional testing was performed to determine the effects of tolaasin on the two organisms. In addition, laser treatment was tested on E. faecalis in order to supplement our current understanding of biofilm behavior, and provide additional data to suggest alternative agents against biofilm growth.
This thesis addresses the following questions: What are the best methods to test the effects of tolaasin, cephalexin and laser on the biofilms of S. aureus and S. epidermidis? Does tolaasin prevent or disrupt biofilm formation in S. aureus and S. epidermidis? Does tolaasin work synergistically with cephalexin to prevent biofilm growth and maturation in S. aureus and S. epidermidis? And, what effects does laser treatment have on E. faecalis biofilms? In order to answer these questions, tolaasin was isolated from P. tolaasii, and biofilms were pre-treated with tolaasin. Trials were performed with tolaasin, cephalexin, or a combination of both. The effectiveness of each treatment was determined by observing the biofilm growth. The protocols were then optimized and trials were repeated. Additionally, E. faecalis biofilms were exposed to laser treatment. Using confocal microscopy, the biofilms were observed and quantitative results were used to determine the effectiveness of the treatment. Overall, the results indicated that tolaasin has little effect on biofilm growth. However, further investigation is necessary to confirm these results due to some inconsistent data obtained over the course of the trials. Variations and improvements to the protocol are necessary to accurately determine tolaasin’s potential role in healthcare. Finally, the results of the laser trials suggest that EDTA in conjunction with laser treatment could be useful in cleaning root canals and eliminating post-procedural biofilms—thereby preventing infections.
ContributorsChristopher, Zachary Kyle (Author) / Stout, Valerie (Thesis director) / Haydel, Shelley (Committee member) / Muralinath, Maneesha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137550-Thumbnail Image.png
Description
This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which

This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which cannot sustain a solid form within the body. Therefore, this report will ultimately explore the means of creating a non-degradable, injectable, chemically cross-linking methylcellulose- based hydrogel. Methylcellulose will be evaluated and altered in experiments conducted within this report and a chemical cross-linker, developed from Jeffamine ED 2003 (O,O′-Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), will be created. Experimentation with these elements is outlined here, and will ultimately prompt future revisions and analysis.
ContributorsBundalo, Zoran Luka (Author) / Vernon, Brent (Thesis director) / LaBelle, Jeffrey (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
135244-Thumbnail Image.png
Description
Biofilm derived orthopedic infections are increasingly common after contamination of an open bone fracture or the surgical site pre- and post-orthopedic prosthetic insertion or removal. These infections are usually difficult to eradicate due to the resistant nature of biofilms to antimicrobial therapy. Difficulty of treatment of biofilm derived infections is

Biofilm derived orthopedic infections are increasingly common after contamination of an open bone fracture or the surgical site pre- and post-orthopedic prosthetic insertion or removal. These infections are usually difficult to eradicate due to the resistant nature of biofilms to antimicrobial therapy. Difficulty of treatment of biofilm derived infections is also partly due to the presence of persister cells in the biofilm matrix. Persister cells are tolerant to antimicrobial therapy delivered via the systemic route. It is thus possible for these cells to repopulate their environment once systemic antimicrobial delivery is discontinued. The antimicrobial concentration required to eradicate bacterial biofilms, minimum biofilm eradication concentration (MBEC), can be determined in vitro by exposing biofilms to different regimens of antimicrobial solutions. Previous studies have demonstrated that values of the MBEC vary depending on the material and surface the biofilm grows on. This study investigated the relationship between antimicrobial susceptibility and antimicrobial exposure time, and the effects of surface material type on the antimicrobial susceptibility of staphylococcal biofilms. It was concluded that antimicrobial susceptibility increases with increased antimicrobial exposure time, and that the investigated surface and material properties did not have an effect on the susceptibility of staphylococcal biofilms to antimicrobial therapy. Further investigation is however necessary to confirm these results due to some inconsistent data obtained over the course of the trials.
ContributorsTavaziva, Gamuchirai Clinton (Author) / Vernon, Brent (Thesis director) / Overstreet, Derek (Committee member) / Castaneda, Paulo (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05