Matching Items (5)
Filtering by

Clear all filters

137262-Thumbnail Image.png
Description
The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to

The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to best-depict these scenarios where incidents of aircraft overrunning the runway, referred to as runway excursions. A case-study conducted of 44 federal investigations of runway excursions produced data indicating four influential factors within these incidents: weather, pilot error, instrument malfunction, and runway condition. Upon examination, all but pilot error appeared to have federal enforcement to diminish the occurrence of future incidents. This is a direct result of the broad possibilities that make up this factor. The study then searched for a consistent fault within the incidents with the results indicating an indirect relationship of thrust reversers, a technique utilized by pilots to provide additional braking, to these excursions. In cases of thrust reverser failure, pilots' over-reliance on the system lead to time being lost from the confusion produced by the malfunction, ultimately resulting in several different runway excursions. The legal implication with the situation is that current regulations are ambiguous on the subject of thrust reversers and thus do not properly model the usage of the technique. Thus, to observe the scope of danger this ambiguity presents to the industry, the relationship of the technique to commercial aerospace needed to be determined. Interviews were set-up with former commercial pilots to gather data related to the flight crew perspective. This data indicated that thrust reversers were actively utilized by pilots within the industry for landing operations. The problem with the current regulations was revealed that the lack of details on thrust reverser reflected a failure of regulations to model current industry flight operations. To improve safety within the industry, new data related to thrust reverser deployment must be developed and enforced to determine appropriate windows to utilize the technique, thus decreasing time lost in confusion that results from thrust reversers malfunction. Future work would be based on producing simulations to determine said data as well as proposing the policy suggestions produced by this thesis.
ContributorsCreighton, Andrew John (Author) / Takahashi, Timothy (Thesis director) / Marchant, Gary (Committee member) / Kimberly, Jimmy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-05
134673-Thumbnail Image.png
Description
This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with

This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with the wing geometry fixed, to match a Sears-Haack distribution. Following the optimization of the area, the tool collects geometric data for analysis using legacy performance tools. This analysis revealed that performing the optimization yielded an average reduction in wave drag of 25% across a variety of Mach numbers on two different starting geometries. The goal of this project is to integrate this optimization tool into a larger trade study tool as it will allow for higher fidelity modeling as well as large improvements in transonic and supersonic drag performance.
ContributorsLeader, Robert William (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133327-Thumbnail Image.png
Description
This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check

This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check for the validity of design integration before moving forward on systems testing. With this script, users are able to visually analyze the landing gear configurations on an aircraft in both the gear up and gear down configuration. The primary purpose this serves is to determine the validity of the gear's potential to fit within the limited real estate on an aircraft body. This, theoretically, can save time by weeding out infeasible designs before moving forward with subsystem performance testing. The script, developed in Python, constructs CAD models of dual and dual-tandem main landing gear configurations in the CAD program Rhino5. With an included design template consisting of 33 parameters, the script allows for a reasonable trade off between conciseness and flexibility of design.
ContributorsPatrick, Noah Edward (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
147868-Thumbnail Image.png
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsRanganathan, Anirudh (Co-author) / Karthikeyan, Sayish (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsKarthikeyan, Sayish Priya (Co-author) / Ranganathan, Anirudh (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05