Matching Items (15)

136445-Thumbnail Image.png

Stress and Biological Pathways of Schizophrenia: EGR3 Dependent HTR2A Expression in Response to Sleep Deprivation

Description

Environmental and genetic factors contribute to schizophrenia etiology, yet few studies have demonstrated how environmental stimuli impact genes associated with the disorder. Immediate early genes (IEGs) are of great interest

Environmental and genetic factors contribute to schizophrenia etiology, yet few studies have demonstrated how environmental stimuli impact genes associated with the disorder. Immediate early genes (IEGs) are of great interest to schizophrenia research because they are activated in response to physiological stress from the environment, and subsequently regulate the expression of downstream genes that are essential to neuropsychiatric function. An IEG, early growth response 3 (EGR3) has been identified as a main gene involved in a network of transcription factors implicated in schizophrenia susceptibility. The serotonin 2A receptor (5-HT2AR) seems to play an important role in schizophrenia and the dysfunction of the 5-HT2AR encoding gene, HTR2A, within the prefrontal cortex (PFC) contributes to multiple psychiatric illnesses including schizophrenia. EGR3's role as a transcription factor that is activated by environmental stimuli suggests it may regulate Htr2a transcription in response to physiological stress, thus affecting 5-HT2AR function in the prefrontal cortex (PFC). The aim of this study was to examine the relationship between Egr3 activation and Htr2a expression after an environmental stimulus. Sleep deprivation is an acute physiological stressor that activates Egr3. Therefore to examine the relationship between Egr3 and Htr2a expression after an acute stress, wild type and Egr3 knockout mice that express EGFP under the control of the Htr2a promoter were sleep deprived for 8 hours. We used immunohistochemistry to determine the location and density of Htr2a-EGFP expression after sleep deprivation and found that Htr2a-EGFP expression was not affected by sex or subregions of the PFC. Additionally, Htr2a-EGFP expression was not affected by the loss of Egr3 or sleep deprivation within the PFC. The LPFC subregions, layers V and VI showed significantly more Htr2a-EGFP expression than layers I-III in all animals for both sleep deprivation and control conditions. Possible explanations for the lack of significant effects in this study may be the limited sample size or possible biological abnormalities in the Htr2a-EGFP mice. Nonetheless, we did successfully visualize the anatomical distribution of Htr2a in the prefrontal cortex via immunohistochemical staining. This study and future studies will provide insight into how Egr3 activation affects Htr2a expression in the PFC and how physiological stress from the environment can alter candidate schizophrenia gene function.

Contributors

Agent

Created

Date Created
  • 2014-05

134975-Thumbnail Image.png

The Effect of an Environmental Stimulus on a Genetic Pathway Associated with Schizophrenia

Description

Schizophrenia risk is influenced by both genetic and environmental factors. The immediate early gene early growth response 3 (Egr3), is regulated downstream of several schizophrenia risk genes and encodes a

Schizophrenia risk is influenced by both genetic and environmental factors. The immediate early gene early growth response 3 (Egr3), is regulated downstream of several schizophrenia risk genes and encodes a zinc-finger transcription factor protein. Previous studies from our lab indicate that Egr3 deficient (Egr3 -/-) mice exhibit schizophrenia-like phenotypes. We also discovered decreased serotonin 2a receptors (5-HT2AR) in the Egr3 -/- mice, similar to studies that reported decreased 5-HT2ARs in schizophrenia patients. We previously reported that sleep deprivation, a mild stress, causes the over expression of Egr3 and the serotonin 2a gene (Htr2a) in the cortex. To determine whether EGR3, a transcription factor, regulates Htr2a in the prefrontal cortex after sleep deprivation, Egr3 -/-and Egr3 +/+ mice were sleep deprived for eight hours. Transgenic mice were used that expressed enhanced green fluorescent protein (EGFP) under control of the Htr2a promoter via a bacterial artificial chromosome (BAC). Immunohistochemistry was performed to identify EGFP containing cells. Data analysis revealed no significant interaction between genotype and sleep deprivation in 5-HT2AR/EGFP containing cells within the prefrontal cortex. Based on the findings of this study, more data is needed to better determine the relationship between sleep deprivation and its effect on the regulation of Htr2a through in an EGR3 dependent manner.

Contributors

Agent

Created

Date Created
  • 2016-12

135926-Thumbnail Image.png

Modulation of 1,25-Dihydroxyvitamin D3 Signaling: Implications for Aging and Neuropsychiatric Disorders

Description

The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol

The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal models. This present study employed mammalian 2-hybrid (M2H) and vitamin D responsive element (VDRE)-based transcriptional assays to investigate the potential effects of Res and SIRT-1 on VDR signal transduction. Results from VDRE-based assays indicate that Res and SIRT-1 potentiate 1,25D-VDR activity via cell-and-promoter-specific pathways. In addition, 1,25D displacement experiments revealed an increase in VDR-bound radiolabeled 1,25D in the presence of Res, suggesting that Res may potentiate VDR transactivation by stimulating 1,25D binding. M2H assays in HEK293 cells were then utilized to assess levels of interaction between VDR and VDR comodulators, including RXR, SRC-1, and DRIP-205. Both Res and SIRT-1 increased the ability of VDR to associate with RXR; however, SRC-1 and DRIP-205 interactions were not enhanced. The activity of a novel, non-acetylatable VDR mutant, K413R, was probed revealing that K413R possesses amplified transactivation capacity over wild-type VDR. A SIRT-1 inhibitor, EX-527, was used to suppress endogenous SIRT-1, resulting in significantly decreased VDR transactivation. Finally, qPCR results in HEK293 cells revealed that the 1,25D-mediated induction of CYP24A1, an endogenous VDR target gene, was enhanced (85%) by SIRT-1 while Res increased CYP24A1 expression by 294%. The combination of 1,25D, SIRT-1, and Res amplified CYP24A1 expression by 326% over 1,25D, although this effect did not reach statistical significance when compared to the Res only treated group. We conclude that acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This loop is suppressed by resveratrol/SIRT-1-catalyzed deacetylation of VDR, restoring VDR activity. The two compounds, 1,25-dihydroxyvitamin D (1,25D, vitamin D) and 5-hydroxytryptamine (5-HT, serotonin), have been proposed to play a significant role in abnormal social behavior associated with psychological conditions including autism spectrum disorders (ASDs) and depression; however, the mechanism underlying these associations has yet to be elucidated. Deficiencies in 1,25D or 5-HT have been linked to the increased incidence of ASDs. Thus, examining the modulation of genes involved in 5-HT biosynthesis, reuptake, and degradation is fundamental in linking low 1,25D levels to the increased incidence of psychiatric disorders. We propose that 1,25D regulates tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway of 5-HT. In order to evaluate the regulation of TPH2 in neuronal cells, three formulations of media were examined to optimize the cell culture conditions necessary for growth and morphology of embryonic rat medullary raphe (B14) serotonergic neurons. Next, quantitative real time-PCR (qPCR) was utilized to examine TPH2 expression in cultured human glioblastoma (U-87) cells and rat serotonergic neurons (B-14). Human TPH2 mRNA in U-87 cells was induced dose-dependently resulting in a 2.4-fold increase at 10 nM 1,25D. Strikingly, TPH2 mRNA in B-14 cells was observed to be 26- to 86-fold upregulated at 10 nM 1,25D; however, 1 nM and 100 nM 1,25D elicited significantly smaller inductions (8-fold and 1.2-fold, respectively).

Contributors

Agent

Created

Date Created
  • 2015-12

135273-Thumbnail Image.png

Factors that modulate production of tryptophan by Gut Bacteria

Description

Microorganisms can produce metabolites in the gut including short chain fatty acids, vitamins, and amino acids. Certain metabolites produced in the gut can affect the brain through changes in

Microorganisms can produce metabolites in the gut including short chain fatty acids, vitamins, and amino acids. Certain metabolites produced in the gut can affect the brain through changes in neurotransmitter concentrations. Serotonin, a neurotransmitter, is associated with mood, appetite, and sleep. Up to 90% of serotonin synthesis is located in the gut, by human enterochromaffin cells. Bacteria known to biosynthesize tryptophan, precursor to serotonin, include Escherichia coli, Enterococcus and Streptococcus. Tryptophan is synthesized by bacteria with the enzyme tryptophan synthase and requires Vitamin B6 (Pyridoxal). We hypothesize that gut isolates from surgical weight loss patients can enhance tryptophan production, which relies on vitamin B6 availability. Our goal was to isolate bacteria in order to test for tryptophan production and to determine how Vitamin B6 concentrations could affect tryptophan production. We isolated gut bacteria was from successful surgical weight loss patient with selective pressures for Enterobacter isolates and Enterococcus isolates. We tested the isolates were tested to determine if they could biosynthesize tryptophan in-vitro. Bacterial cultures were enriched with yeast and enriched with serine and indole, substrates necessary for tryptophan biosynthesis. We analyzed the supernatant samples for tryptophan production using GC-FID. Bacterial isolates most closely related to E. coli and Klebsiella based on 16S rRNA gene sequences, produced tryptophan in vitro. While under serine & indole media conditions, R1, the isolate most similar to Klebsiella produced more tryptophan than R14, the isolate most similar to E. coli. We tested the R1 isolate with a gradient of vitamin B6 concentrations from 0.02 µg/mL to 0.2 µg/mL to determine its effect on tryptophan production. When less than 0.05 µg/mL of Vitamin B6 was added, tryptophan production at 6 hours was higher than tryptophan production with Vitamin B6 concentrations at 0.05 µg/mL and above. The production and consumption of tryptophan by Klebsiella under 0 µg/mL and 0.02 µg/mL concentrations of Vitamin B6 occurred at a faster rate when compared to concentrations 0.05 µg/mL or higher of Vitamin B6.

Contributors

Agent

Created

Date Created
  • 2016-05

133745-Thumbnail Image.png

5-HT1B Receptor Agonists Hold Promise as Treatments for Psychostimulant Use Disorders

Description

Previously we found that the serotonin 1B receptor (5-HT1BR) agonist CP 94,253 (CP) enhances the reinforcing properties of cocaine when given to male rats self-administering the drug daily, however, CP

Previously we found that the serotonin 1B receptor (5-HT1BR) agonist CP 94,253 (CP) enhances the reinforcing properties of cocaine when given to male rats self-administering the drug daily, however, CP had the opposite effect following a 21-day period of abstinence. Methamphetamine, like cocaine, has similar mechanisms of action on the monoamine neurotransmitter systems. Therefore, we predicted that CP would have effects on the reinforcing properties of methamphetamine similar to cocaine. Additionally, we examined effects of the FDA-approved 5-HT1B/DR agonist, zolmitriptan, on psychostimulant self-administration. We first tested the effects of CP on methamphetamine self-administration utilizing a fixed ratio or progressive ratio schedule of reinforcement and found that regardless of whether or not rats experienced abstinence, CP decreased methamphetamine intake. We next verified that the effects of CP were mediated by 5-HT1BRs by demonstrating they were reversed when paired with a 5-HT1BR antagonist. We then tested the effects of zolmitriptan on methamphetamine responding and found the same results as found with CP. Finally, we tested whether the effects of zolmitriptan generalize to female rats. Both male and female rats were given access to various doses of cocaine after treatment with zolmitriptan. We also ruled out 5-HT1BR ligands has having an effect on locomotion, to rule out motor impairment as the reason behind the decreases in drug intake. Unlike our previous findings with CP effects on cocaine self-administration, zolmitriptan attenuated cocaine intake both before and after abstinence in both male and female rats. The pre-abstinence effects of zolmitriptan in attenuating intake of different psychostimulants suggest its potential as a pharmacological treatment for psychostimulant use disorders.

Contributors

Agent

Created

Date Created
  • 2018-05

133302-Thumbnail Image.png

The Effects of a Novel Serotonin-7 Receptor (5-HT7R) Antagonist, MC-RG19, on Cocaine-Related Behaviors

Description

The serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the study of drug addiction. Of the 14 known serotonin receptor subtypes, the 5-HT7R is the most recently discovered and, therefore, one

The serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the study of drug addiction. Of the 14 known serotonin receptor subtypes, the 5-HT7R is the most recently discovered and, therefore, one of the least rigorously studied. However, the 5-HT7R has been shown to play a role in multiple psychiatric conditions, including depression, anxiety, and alcoholism. This is not surprising, as the 5-HT7R is expressed in brain regions associated with emotion and reward, such as the amygdala, dorsal raphe nucleus, and striatum. MC-RG19 is a novel 5-HT7R antagonist which has >114-fold selectivity for the 5-HT7 over other serotonin receptors. This compound was developed by our collaborators at the Temple University School of Pharmacy. Due to this specificity, and the implications of the 5-HT7 in behavior, we hypothesized that MC-RG19 would have an effect on addiction-related behaviors. We investigated the effects of MC-RG19 on spontaneous locomotion, cue-induced reinstatement, and cocaine/sucrose multiple schedule self-administration. We observed a dose-dependent decrease in spontaneous locomotor activity with significance at a MC-RG19 dose of 10 mg/kg. A dose of 5.6 mg/kg, which did not significantly decrease locomotion, significantly reduces cocaine-seeking behavior (active lever pressing) in response to the reintroduction of drug-paired cues after a period of extinction. No dose (3, 5.6, or 10 mg/kg) produced a significant effect on a multiple schedule of self-administration with alternating availability of sucrose and cocaine as the reinforcer. These results indicate that MC-RG19 has an effect on the incentive \u2014 motivational properties of reward-paired cues.

Contributors

Agent

Created

Date Created
  • 2018-05

The Effect of Ovarian Hormonal Status on 5HT1B Receptor Modulation of Cocaine Self-Administration

Description

Cocaine is a powerful psychomotor stimulant that can affect serotonin (5HT), dopamine, and norepinephrine systems in the brain. Previous studies with 5HT1B receptor agonist, CP94253, have shown dose-dependent decreases in

Cocaine is a powerful psychomotor stimulant that can affect serotonin (5HT), dopamine, and norepinephrine systems in the brain. Previous studies with 5HT1B receptor agonist, CP94253, have shown dose-dependent decreases in cocaine-self administration in male rats during maintenance. However, these studies do not take into consideration sex differences between male rats and female rats. Female rats introduce a new complexity because they constantly undergo an estrous cycle that consists of four phases, metestrus, diestrus, proestrus, and estrus. It was hypothesized that cocaine infusions and active lever response rates would greatly decrease during proestrus and estrus in comparison to metestrus and diestrus due to hormonal level differences of LH, FSH, progesterone, and estradiol. In this study, female rats were trained to self-administer a training dose of 0.75 mg/kg/infusion on a fixed progressive ratio (FR5). Rats were then pretreated with CP94253 to test the effects of this 5HT1B agonist on female rat cocaine self-administration during the estrous cycle. Results showed there was no three-way interaction between cycle phase, pretreatment, and cocaine dose on infusions or active lever responses. However, pretreatment with CP94253 decreased cocaine intake and active lever responses at high cocaine doses, regardless of cycle phase. Lastly, there was a two-way interaction between pretreatment and cycle phase in which active lever responses decreased during diestrus and proestrus. These results imply that CP94253 enhances cocaine's effect regardless of cycle phase. Future work can work with ovariectomized (OVX) female rats to observe cocaine self-administration during controlled cycle phases.

Contributors

Agent

Created

Date Created
  • 2018-05

137015-Thumbnail Image.png

Functional Switch in the Role of 5-HT1B Receptors as a Result of Cocaine Withdrawal in Mice

Description

Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of

Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine system, has been implicated in the incentive motivational and rewarding effects of cocaine. Our research suggests that the stimulation of 5-HT1BRs produces different effects at various time points in the addiction cycle. During maintenance of chronic cocaine administration, 5-HT1BR stimulation has a facilitative effect on the reinforcing properties of cocaine. However 5-HT1BR stimulation exhibits inhibitory effects on reinforcement during prolonged abstinence from cocaine. The aim of this study was to examine the possibility of a switch in the functional role of 5-HT1BRs in the locomotor effects of cocaine at different time points of chronic cocaine administration in mice. We found that the 5-HT1BR agonist CP 94,253 increased locomotor activity in mice tested one day after the last chronic cocaine administration session regardless of whether the chronic treatment was cocaine or saline and regardless of challenge injection (i.e., cocaine or saline). Yet after abstinence, CP 94,253 induced a decrease in locomotor activity in mice challenged with saline and attenuated cocaine-induced locomotion relative to cocaine challenge after vehicle pretreatment. These findings suggest that a switch in the functional role of 5-HT1BR is observed at different stages of the addiction cycle and further suggest that clinical applications of drugs acting on 5-HT1BR should consider these effects.

Contributors

Agent

Created

Date Created
  • 2014-05

155680-Thumbnail Image.png

Serotonin functioning and adolescents' alcohol use: a genetically informed study examining mechanisms of risk

Description

The current study utilized data from two longitudinal samples to test mechanisms in the relation between a polygenic risk score indexing serotonin functioning and alcohol use in adolescence. Specifically, this

The current study utilized data from two longitudinal samples to test mechanisms in the relation between a polygenic risk score indexing serotonin functioning and alcohol use in adolescence. Specifically, this study tested whether individuals with lower levels of serotonin functioning as indexed by a polygenic risk score were vulnerable to poorer self-regulation, and whether poorer self-regulation subsequently predicted the divergent outcomes of depressive symptoms and aggressive/antisocial behaviors. This study then examined whether depressive symptoms and aggressive/antisocial behaviors conferred risk for later alcohol use in adolescence, and whether polygenic risk and effortful control had direct effects on alcohol use that were not mediated through problem behaviors. Finally, the study examined the potential moderating role of gender in these pathways to alcohol use.

Structural equation modeling was used to test hypotheses. Results from an independent genome-wide association study of 5-hydroxyindoleacetic acid in the cerebrospinal fluid were used to create serotonin (5-HT) polygenic risk scores, wherein higher scores reflected lower levels of 5-HT functioning. Data from three time points were drawn from each sample, and all paths were prospective. Findings suggested that 5-HT polygenic risk did not predict self-regulatory constructs. However, 5-HT polygenic risk did predict the divergent outcomes of depression and aggression/antisociality, such that higher levels of 5-HT polygenic risk predicted greater levels of depression and aggression/antisociality. Results most clearly supported adolescents’ aggression/antisociality as a mechanism in the relation between 5-HT polygenic risk and later alcohol use. Deficits in self-regulation also predicted depression and aggression/antisociality, and indirectly predicted alcohol use through aggression/antisociality. These pathways to alcohol use might be the most salient for boys with low levels of socioeconomic status.

Results are novel contributions to the literature. The previously observed association between serotonin functioning and alcohol use might be due, in part, to the fact that individuals with lower levels of serotonin functioning are predisposed towards developing earlier aggression/antisociality. Results did not support the hypothesis that serotonin functioning predisposes individuals to deficits in self-regulatory abilities. Findings extend previous research by suggesting that serotonin functioning and self-regulation might be transdiagnostic risk factors for many types of psychopathology.

Contributors

Agent

Created

Date Created
  • 2017

156920-Thumbnail Image.png

A Mouse Model of Serotonin 1B Receptor Modulation of Cocaine and Methamphetamine Craving

Description

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA)

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned place preference (CPP). Subsequent experiments showed that CP94253 given prior to conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure of drug reward; however, CP94253 given prior to testing attenuated expression of methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell types involved in CP94253 attenuation of methamphetamine-seeking, I examined changes in the immediate early gene product, Fos, which is a marker of brain activity involving gene transcription changes. Mice expressing methamphetamine-CPP showed elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in the central nucleus of the amygdala (CeA). In mice showing CP94253-induced attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the CeA, suggesting that the increases observed in methamphetamine-conditioned mice were due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking in mice, and that the latter effect may involve normalizing activity in the amygdala and increasing activity in the mesolimbic pathway. These findings further support the potential efficacy of 5-HT1BR agonists as pharmacological interventions for psychostimulant craving in humans.

Contributors

Agent

Created

Date Created
  • 2018