Matching Items (3)
Filtering by

Clear all filters

133364-Thumbnail Image.png
Description
The objective of this paper is to provide an educational diagnostic into the technology of blockchain and its application for the supply chain. Education on the topic is important to prevent misinformation on the capabilities of blockchain. Blockchain as a new technology can be confusing to grasp given the wide

The objective of this paper is to provide an educational diagnostic into the technology of blockchain and its application for the supply chain. Education on the topic is important to prevent misinformation on the capabilities of blockchain. Blockchain as a new technology can be confusing to grasp given the wide possibilities it can provide. This can convolute the topic by being too broad when defined. Instead, the focus will be maintained on explaining the technical details about how and why this technology works in improving the supply chain. The scope of explanation will not be limited to the solutions, but will also detail current problems. Both public and private blockchain networks will be explained and solutions they provide in supply chains. In addition, other non-blockchain systems will be described that provide important pieces in supply chain operations that blockchain cannot provide. Blockchain when applied to the supply chain provides improved consumer transparency, management of resources, logistics, trade finance, and liquidity.
ContributorsKrukar, Joel Michael (Author) / Oke, Adegoke (Thesis director) / Duarte, Brett (Committee member) / Hahn, Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136098-Thumbnail Image.png
Description
In order to discover if Company X's current system of local trucking is the most efficient and cost-effective way to move freight between sites in the Western U.S., we will compare the current system to varying alternatives to see if there are potential avenues for Company X to create or

In order to discover if Company X's current system of local trucking is the most efficient and cost-effective way to move freight between sites in the Western U.S., we will compare the current system to varying alternatives to see if there are potential avenues for Company X to create or implement an improved cost saving freight movement system.
ContributorsPicone, David (Co-author) / Krueger, Brandon (Co-author) / Harrison, Sarah (Co-author) / Way, Noah (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Economics Program in CLAS (Contributor) / School of Accountancy (Contributor) / W. P. Carey School of Business (Contributor) / Sandra Day O'Connor College of Law (Contributor)
Created2015-05
134974-Thumbnail Image.png
Description
The goal of this thesis was to provide in depth research into the semiconductor wet-etch market and create a supplier analysis tool that would allow Company X to identify the best supplier partnerships. Several models were used to analyze the wet etch market including Porter's Five Forces and SWOT analyses.

The goal of this thesis was to provide in depth research into the semiconductor wet-etch market and create a supplier analysis tool that would allow Company X to identify the best supplier partnerships. Several models were used to analyze the wet etch market including Porter's Five Forces and SWOT analyses. These models were used to rate suppliers based on financial indicators, management history, market share, research and developments spend, and investment diversity. This research allowed for the removal of one of the four companies in question due to a discovered conflict of interest. Once the initial research was complete a dynamic excel model was created that would allow Company X to continually compare costs and factors of the supplier's products. Many cost factors were analyzed such as initial capital investment, power and chemical usage, warranty costs, and spares parts usage. Other factors that required comparison across suppliers included wafer throughput, number of layers the tool could process, the number of chambers the tool has, and the amount of space the tool requires. The demand needed for the tool was estimated by Company X in order to determine how each supplier's tool set would handle the required usage. The final feature that was added to the model was the ability to run a sensitivity analysis on each tool set. This allows Company X to quickly and accurately forecast how certain changes to costs or tool capacities would affect total cost of ownership. This could be heavily utilized during Company X's negotiations with suppliers. The initial research as well the model lead to the final recommendation of Supplier A as they had the most cost effective tool given the required demand. However, this recommendation is subject to change as demand fluctuates or if changes can be made during negotiations.
ContributorsSchmitt, Connor (Co-author) / Rickets, Dawson (Co-author) / Castiglione, Maia (Co-author) / Witten, Forrest (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12