Matching Items (3)
Filtering by

Clear all filters

134715-Thumbnail Image.png
Description
Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72 hours, leading to several physicians presumptively treating patients based solely on history and physical presentation. With vague standards for diagnosis and a high percentage of asymptomatic carriers, several patients undergo two scenarios; over- or under-treatment. These two scenarios can lead to consequences like unnecessary exposure to antibiotics and development of secondary conditions (for example: pelvic inflammatory disease, infertility, etc.). This presents a need for a laboratory technique that can provide reliable results in an efficient matter. The viability of DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest were evaluated. The DNA-based chip presented several advantages as it can be easily integrated as a routine test given the process is already well-known, is customizable and able to target multiple pathogens within a single test and has the potential to return results within a few hours as opposed to days. As such, implementation of a DNA-based chip as a diagnostic tool is a timely and potentially impactful investigation.
ContributorsCharoenmins, Patherica (Author) / Penton, Christopher (Thesis director) / Moore, Marianne (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Leprosy and tuberculosis are age-old diseases that have tormented mankind and left behind a legacy of fear, mutilation, and social stigmatization. Today, leprosy is considered a Neglected Tropical Disease due to its high prevalence in developing countries, while tuberculosis is highly endemic in developing countries and rapidly re-emerging in several

Leprosy and tuberculosis are age-old diseases that have tormented mankind and left behind a legacy of fear, mutilation, and social stigmatization. Today, leprosy is considered a Neglected Tropical Disease due to its high prevalence in developing countries, while tuberculosis is highly endemic in developing countries and rapidly re-emerging in several developed countries. In order to eradicate these diseases effectively, it is necessary to understand how they first originated in humans and whether they are prevalent in nonhuman hosts which can serve as a source of zoonotic transmission. This dissertation uses a phylogenomics approach to elucidate the evolutionary histories of the pathogens that cause leprosy and tuberculosis, Mycobacterium leprae and the M. tuberculosis complex, respectively, through three related studies. In the first study, genomes of M. leprae strains that infect nonhuman primates were sequenced and compared to human M. leprae strains to determine their genetic relationships. This study assesses whether nonhuman primates serve as a reservoir for M. leprae and whether there is potential for transmission of M. leprae between humans and nonhuman primates. In the second study, the genome of M. lepraemurium (which causes leprosy in mice, rats, and cats) was sequenced to clarify its genetic relationship to M. leprae and other mycobacterial species. This study is the first to sequence the M. lepraemurium genome and also describes genes that may be important for virulence in this pathogen. In the third study, an ancient DNA approach was used to recover M. tuberculosis genomes from human skeletal remains from the North American archaeological record. This study informs us about the types of M. tuberculosis strains present in post-contact era North America. Overall, this dissertation informs us about the evolutionary histories of these pathogens and their prevalence in nonhuman hosts, which is not only important in an anthropological context but also has significant implications for disease eradication and wildlife conservation.
ContributorsHonap, Tanvi Prasad (Author) / Stone, Anne C (Thesis advisor) / Rosenberg, Michael S. (Thesis advisor) / Clark-Curtiss, Josephine E (Committee member) / Krause, Johannes (Committee member) / Arizona State University (Publisher)
Created2017
165168-Thumbnail Image.png
Description
Water is a scarce resource that is recycled through wastewater treatment plants (WWTPs) to help fulfill the demand for water. Agriculture is a large consumer of water, indicating that WWTP-treated water is proportionally applied to crops at a high rate. Recycled water is highly regulated but is capable of containing

Water is a scarce resource that is recycled through wastewater treatment plants (WWTPs) to help fulfill the demand for water. Agriculture is a large consumer of water, indicating that WWTP-treated water is proportionally applied to crops at a high rate. Recycled water is highly regulated but is capable of containing high-risk pathogens and contaminants despite the efforts of physical and microbial treatments throughout the WWTP process. WWTPs are also producers of biosolids, treated sewage sludge regulated by the EPA that can be applied in agricultural settings to act as a fertilizer. Biosolids are a useful fertilizer as they are rich in nitrogen and contain many beneficial nutrients for soil and crops. Due to biosolids being a by-product of recycled water, they are susceptible to containing the same pathogens and contaminants that can be transferred in the WWTP systems. Antibiotic resistance (AR) is an ever-growing threat on a global scale and is one of the areas of concern for consideration of pathogen spread from WWTPs. Antibiotic resistance bacteria, created through mutation of bacterial plasmids producing antibiotic resistance genes (ARGs), have been quantified and studied to help mitigate the risk posed by continued AR spread in the environment. This study aims to produce a comprehensive collection of quantified ARG concentration data in biosolids, as well as producing a QMRA model integrating Monte Carlo distributions to provide groundwork for understanding of the direct dosage and consumption of ARGs to the standard U.S. citizen. The study determined that sul1, sul2, tetM, and tetO are ARGs of high concern in biosolid samples based on current concentration data of biosolid samples. The resulting dose models and gene concentration distributions provide data to support the need to mitigate AR risk presented by agricultural biosolid application.
ContributorsMorgan, Grace (Author) / Hamilton, Kerry (Thesis director) / Muenich, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05