Matching Items (1)
Filtering by

Clear all filters

133289-Thumbnail Image.png
Description
Each year the hospitals in the United States dispose of viable medications worth millions of dollars. These facilities are currently forced to do so not because the medications have expired, or are no longer effective, but rather because to re-use any leftover medications would allow for the possibility of spreading

Each year the hospitals in the United States dispose of viable medications worth millions of dollars. These facilities are currently forced to do so not because the medications have expired, or are no longer effective, but rather because to re-use any leftover medications would allow for the possibility of spreading disease. Once a medications sterile seal has been broken, any remaining contents of its container are considered potential pathogenic biohazards, and must be disposed of. The main objective of this thesis was to explore a potential alternative to simply discarding these lifesaving and often expensive leftover medications. The ultimate goal of this work is to establish a process by which excess drugs could be safely and effectively purified for re-use, subsequently cutting costs, and enhancing medication availability. Pseudomonas aeruginosa (P.a.) and Staphylococcus aureus (S.a) were cultured for their commonality in healthcare-associated infections (HAI's), and allowed to contaminate medication-like compounds. These bacterially inoculated solutions were meant to mimic the contaminated medications mentioned above and were then treated with a novel, physical means of pathogen inactivation named SElective PHOtonic DISinfection (SEPHODIS). Pathogen load reduction was determined through plate count assays both before and after exposure to the SEPHODIS system. structural preservation of medication was established through the use of infrared spectroscopy. The results of these experiments furthered the confidence of SEPHODIS as an efficient means of pathogen inactivation, while promoting promise of a real-world application in the form of medication purification.
ContributorsKutemeier, Hayden (Author) / Bean, Heather (Thesis director) / Tsen, Kong-Thon (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05