Matching Items (3)
Filtering by

Clear all filters

156388-Thumbnail Image.png
Description
The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance

The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance from a mutated protein; this process occurs when the MarR regulates an operon. We hypothesized that different transcriptional regulator genes have interactions with each other. It is known that Salmonella pagC transcription is activated by three regulators, i.e., SlyA, MprA, and PhoP. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system was used to research the protein-protein interactions in SlyA, MprA, and PhoP as heterodimers and homodimers in vivo. Two fragments, T25 and T18, that lack endogenous adenylate cyclase activity, were used for construction of chimeric proteins and reconstruction of adenylate cyclase activity was tested. The significant adenylate cyclase activities has proved that SlyA is able to form homodimers. However, weak adenylate cyclase activities in this study has proved that MprA and PhoP are not likely to form homodimers, and no protein-protein interactions were detected in between SlyA, MprA and PhoP, which no heterodimers have formed in between three transcriptional regulators.
ContributorsTao, Zenan (Author) / Shi, Yixin (Thesis advisor) / Wang, Xuan (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2018
134715-Thumbnail Image.png
Description
Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72 hours, leading to several physicians presumptively treating patients based solely on history and physical presentation. With vague standards for diagnosis and a high percentage of asymptomatic carriers, several patients undergo two scenarios; over- or under-treatment. These two scenarios can lead to consequences like unnecessary exposure to antibiotics and development of secondary conditions (for example: pelvic inflammatory disease, infertility, etc.). This presents a need for a laboratory technique that can provide reliable results in an efficient matter. The viability of DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest were evaluated. The DNA-based chip presented several advantages as it can be easily integrated as a routine test given the process is already well-known, is customizable and able to target multiple pathogens within a single test and has the potential to return results within a few hours as opposed to days. As such, implementation of a DNA-based chip as a diagnostic tool is a timely and potentially impactful investigation.
ContributorsCharoenmins, Patherica (Author) / Penton, Christopher (Thesis director) / Moore, Marianne (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133289-Thumbnail Image.png
Description
Each year the hospitals in the United States dispose of viable medications worth millions of dollars. These facilities are currently forced to do so not because the medications have expired, or are no longer effective, but rather because to re-use any leftover medications would allow for the possibility of spreading

Each year the hospitals in the United States dispose of viable medications worth millions of dollars. These facilities are currently forced to do so not because the medications have expired, or are no longer effective, but rather because to re-use any leftover medications would allow for the possibility of spreading disease. Once a medications sterile seal has been broken, any remaining contents of its container are considered potential pathogenic biohazards, and must be disposed of. The main objective of this thesis was to explore a potential alternative to simply discarding these lifesaving and often expensive leftover medications. The ultimate goal of this work is to establish a process by which excess drugs could be safely and effectively purified for re-use, subsequently cutting costs, and enhancing medication availability. Pseudomonas aeruginosa (P.a.) and Staphylococcus aureus (S.a) were cultured for their commonality in healthcare-associated infections (HAI's), and allowed to contaminate medication-like compounds. These bacterially inoculated solutions were meant to mimic the contaminated medications mentioned above and were then treated with a novel, physical means of pathogen inactivation named SElective PHOtonic DISinfection (SEPHODIS). Pathogen load reduction was determined through plate count assays both before and after exposure to the SEPHODIS system. structural preservation of medication was established through the use of infrared spectroscopy. The results of these experiments furthered the confidence of SEPHODIS as an efficient means of pathogen inactivation, while promoting promise of a real-world application in the form of medication purification.
ContributorsKutemeier, Hayden (Author) / Bean, Heather (Thesis director) / Tsen, Kong-Thon (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05