Matching Items (3)
Filtering by

Clear all filters

134715-Thumbnail Image.png
Description
Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72 hours, leading to several physicians presumptively treating patients based solely on history and physical presentation. With vague standards for diagnosis and a high percentage of asymptomatic carriers, several patients undergo two scenarios; over- or under-treatment. These two scenarios can lead to consequences like unnecessary exposure to antibiotics and development of secondary conditions (for example: pelvic inflammatory disease, infertility, etc.). This presents a need for a laboratory technique that can provide reliable results in an efficient matter. The viability of DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest were evaluated. The DNA-based chip presented several advantages as it can be easily integrated as a routine test given the process is already well-known, is customizable and able to target multiple pathogens within a single test and has the potential to return results within a few hours as opposed to days. As such, implementation of a DNA-based chip as a diagnostic tool is a timely and potentially impactful investigation.
ContributorsCharoenmins, Patherica (Author) / Penton, Christopher (Thesis director) / Moore, Marianne (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154511-Thumbnail Image.png
Description
Isolation-by-distance is a specific type of spatial genetic structure that arises when parent-offspring dispersal is limited. Many natural populations exhibit localized dispersal, and as a result, individuals that are geographically near each other will tend to have greater genetic similarity than individuals that are further apart. It is important to

Isolation-by-distance is a specific type of spatial genetic structure that arises when parent-offspring dispersal is limited. Many natural populations exhibit localized dispersal, and as a result, individuals that are geographically near each other will tend to have greater genetic similarity than individuals that are further apart. It is important to identify isolation-by-distance because it can impact the statistical analysis of population samples and it can help us better understand evolutionary dynamics. For this dissertation I investigated several aspects of isolation-by-distance. First, I looked at how the shape of the dispersal distribution affects the observed pattern of isolation-by-distance. If, as theory predicts, the shape of the distribution has little effect, then it would be more practical to model isolation-by-distance using a simple dispersal distribution rather than replicating the complexities of more realistic distributions. Therefore, I developed an efficient algorithm to simulate dispersal based on a simple triangular distribution, and using a simulation, I confirmed that the pattern of isolation-by-distance was similar to other more realistic distributions. Second, I developed a Bayesian method to quantify isolation-by-distance using genetic data by estimating Wright’s neighborhood size parameter. I analyzed the performance of this method using simulated data and a microsatellite data set from two populations of Maritime pine, and I found that the neighborhood size estimates had good coverage and low error. Finally, one of the major consequences of isolation-by-distance is an increase in inbreeding. Plants are often particularly susceptible to inbreeding, and as a result, they have evolved many inbreeding avoidance mechanisms. Using a simulation, I determined which mechanisms are more successful at preventing inbreeding associated with isolation-by-distance.
ContributorsFurstenau, Tara N (Author) / Cartwright, Reed A (Thesis advisor) / Rosenberg, Michael S. (Committee member) / Taylor, Jesse (Committee member) / Wilson-Sayres, Melissa (Committee member) / Arizona State University (Publisher)
Created2015
Description
Leprosy and tuberculosis are age-old diseases that have tormented mankind and left behind a legacy of fear, mutilation, and social stigmatization. Today, leprosy is considered a Neglected Tropical Disease due to its high prevalence in developing countries, while tuberculosis is highly endemic in developing countries and rapidly re-emerging in several

Leprosy and tuberculosis are age-old diseases that have tormented mankind and left behind a legacy of fear, mutilation, and social stigmatization. Today, leprosy is considered a Neglected Tropical Disease due to its high prevalence in developing countries, while tuberculosis is highly endemic in developing countries and rapidly re-emerging in several developed countries. In order to eradicate these diseases effectively, it is necessary to understand how they first originated in humans and whether they are prevalent in nonhuman hosts which can serve as a source of zoonotic transmission. This dissertation uses a phylogenomics approach to elucidate the evolutionary histories of the pathogens that cause leprosy and tuberculosis, Mycobacterium leprae and the M. tuberculosis complex, respectively, through three related studies. In the first study, genomes of M. leprae strains that infect nonhuman primates were sequenced and compared to human M. leprae strains to determine their genetic relationships. This study assesses whether nonhuman primates serve as a reservoir for M. leprae and whether there is potential for transmission of M. leprae between humans and nonhuman primates. In the second study, the genome of M. lepraemurium (which causes leprosy in mice, rats, and cats) was sequenced to clarify its genetic relationship to M. leprae and other mycobacterial species. This study is the first to sequence the M. lepraemurium genome and also describes genes that may be important for virulence in this pathogen. In the third study, an ancient DNA approach was used to recover M. tuberculosis genomes from human skeletal remains from the North American archaeological record. This study informs us about the types of M. tuberculosis strains present in post-contact era North America. Overall, this dissertation informs us about the evolutionary histories of these pathogens and their prevalence in nonhuman hosts, which is not only important in an anthropological context but also has significant implications for disease eradication and wildlife conservation.
ContributorsHonap, Tanvi Prasad (Author) / Stone, Anne C (Thesis advisor) / Rosenberg, Michael S. (Thesis advisor) / Clark-Curtiss, Josephine E (Committee member) / Krause, Johannes (Committee member) / Arizona State University (Publisher)
Created2017