Matching Items (3)

134979-Thumbnail Image.png

Improving Runway Capacity at Minneapolis St. Paul Airport

Description

Airports are a vital part of the United States' transportation infrastructure. A variety of factors impact the amount of aircraft that an airport can handle per hour. One of these

Airports are a vital part of the United States' transportation infrastructure. A variety of factors impact the amount of aircraft that an airport can handle per hour. One of these factors is the runway capacity. Strict rules regarding the amount of separation required between two aircraft landing at the same airport and lack of available land limit the ways that airport managers and planners can tackle this problem. Research was conducted at the Arizona State University's Simulator Building using the Adacel Tower Simulation System. Modifications to the airport were then made to simulate the high speed exit. Testing utilized aircraft in the large category, including Airbus A320s, which are regularly seen at the airport. Airport capacity dramatically increased as a result. The previous AAR was 33. With the research conducted, aircraft can exit the runway between 27 and 30 seconds with final approach speeds ranging from 130 knots to 150 knots. To allow for a margin for safety, a 35 second runway occupancy time is used. With that rate, assuming that other separation standards are changed to accommodate that traffic level, the runway AAR increases to approximately 100. To reach this potential, changes to the FAAs separation requirements for aircraft on the same final approach course must be made, to allow aircraft to be closer together.

Contributors

Agent

Created

Date Created
  • 2016-12

Neuroarchitecture and Synaesthesia- An Architecture of Atmpospheres at Phoenix Sky Harbor Airport

Description

Architecture has an ability to shape us and focus on forms and efficiency yet frequently ignores relationships between the form and cognition. This negligence creates lost opportunities for creating a

Architecture has an ability to shape us and focus on forms and efficiency yet frequently ignores relationships between the form and cognition. This negligence creates lost opportunities for creating a link between action and perception, embodiment and aesthetics, imagination and empathy. Architecture is frequently not empathetic, lacking meaning to far too many people. Considering the application of neuroscience in architecture to nurture psychological and physiological response to architecture may be key to fostering healthy and positive relationships with space. Another connection that comes up in neuro-scientific research is how creativity plays into design and the understanding of design. Often, creativity is accompanied by metaphor, and neuroscientist Ramachandran is particularly interested in this. A curious phenomenon he has focused on is synaesthesia, Synaesthesia is a Greek-based word, syn meaning joined and aisthesis meaning sensation. It occurs when "Stimulation of one sensory modality automatically triggers perception in a second modality in the absence of any direct stimulation to this modality." Further, the study and application of synaesthetic properties can help achieve this goal. Through the application of neuro-scientific research directed towards architecture, "Neuroarchitecture" is a possible tool that can create architecture that invokes positive responses in occupants. Through the consideration of building elements, natural forces, equal understanding, and synaesthesia, "neuroarchitecture" can be successful. Thus, with the consideration of neuroscience and synaesthesia there is a possibility of understanding what creates the certain emotions that one experiences in a space, and why people like certain places more than others. In a lecture covering this topic at Arizona State University's Design School, designer Ellen Lupton showed graphic visualizations of musical synaesthesia. Bird calls were translated into exceptionally fluid ribbons of moving color that ebbed and crashed with the rise and fall of the bird call. If these experiences can be expressed through digital art, then there may be a way to express them through architecture. The project takes focus on the architecture of flux, limbo, and threshold, within the specific context of the airport. The airport is a one of a kind architecture. There is little to no other architecture that serves as a threshold from one city, state, and country to another, that is full of people from all parts of the world, and is a space of limbo. In the flux of the airport, the individual feels a multitude of emotions, joys, sadness, frustration, and stresses. Studying circulation, movement of both the inhabitant and the architecture of the airport, the project will rigorously question if architecture can be scientifically formulated to create mental effects or if they are a result of atmospheric qualities.

Contributors

Agent

Created

Date Created
  • 2018-05

137398-Thumbnail Image.png

ANALYSIS OF THE OWNERSHIP AND OPERATION OF AIR TRAFFIC CONTROL TOWERS

Description

My project analyzes the air traffic control tower (ATCT) system of the Federal Aviation Administration (FAA) to determine if a rebalancing of ATCT ownership and operation should occur. The government

My project analyzes the air traffic control tower (ATCT) system of the Federal Aviation Administration (FAA) to determine if a rebalancing of ATCT ownership and operation should occur. The government currently faces a problem of a tight financial budget and sequestration, which often times means mandatory budget cuts. This project provides one possible solution for the FAA to save money in their budget without adversely affecting safety. The FAA could establish appropriate criteria to compare all ATCTs. The FAA could then apply these criteria in a policy that would contract the operation of certain low-level ATCTs and conversely handle the operations at high-activity ATCTs. Additionally, the FAA could include a policy to transfer the ownership of certain low-activity towers, but transfer the ownership of high-activity towers to the FAA. The research was completed by studying various documents from the FAA, Department of Transportation (DOT), and industry groups. Most of the data analysis was conducted by creating tables, queries, and graphs from FAA data. The FAA data was found on their Air Traffic Activity Data System (ATADS). From my data analysis, I was able to identify sixty-nine ATCTs that are currently operated by the FAA that could become federal contract towers (FCT) and forty-six FCTs that could be operated by the FAA. Each FCT saves the FAA approximately $1.488 million, so the FAA could save $34.2 million per year by implementing my solutions. I have also established sample criteria for determining which ATCTs could be maintained by the FAA.

Contributors

Created

Date Created
  • 2013-12