Matching Items (8)

Filtering by

Clear all filters

134518-Thumbnail Image.png

Construction and Operation of a Hollow Fiber Membrane Spinning Apparatus

Description

This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was

This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and bore fluid to the spinneret. Based on apparatus runs performed with Polysulfone (PSF) dopes dissolved in N,N-Dimethylacetamide and supporting rheological analysis, the entanglement concentration, ce, was identified as a minimum processing threshold for creating HFMs. Similarly, significant increases in the ultimate tensile strength, fracture strain, and Young's modulus for extruded HFMs were observed as polymer dope concentration was increased at levels near ce. Beyond this initial increase, subsequent tests at higher PSF concentrations yielded diminishing changes in mechanical properties, suggesting an asymptotic approach to a point where the trend would cease. Without further research, it is theorized that this point falls on a transition from the semidiute entangled to concentrated concentration regimes. SEM imaging of samples revealed the formation of grooved structures on the inner surface of samples, which was determined to be a result of the low flowrate and polymer dope concentrations used in processing the HFMs during apparatus runs. Based on continued operation of the preliminary apparatus design, many areas of improvement were noted. Namely, these consisted of controlling the collector speed, eliminating rubbing of nascent fibers against the edge of the coagulation bath by installing an elevated roller, and replacing tygon tubing for the polymer line with a luer lock adapter for direct syringe attachment to the spinneret.

Contributors

Created

Date Created
2017-05

136370-Thumbnail Image.png

COMBINATORIAL SYNTHESIS OF INTRINSICALLY PHOTOLUMINESCENT POLY(AMINO ETHER)S AND THERMOSET RESINS

Description

Increased investigation into the development of macromolecular fluorophores has resulted in the synthesis and discovery of several potential candidates. These include modified and polymeric based dendritic structures, hyperbranched polymers and linear polymers. Strong inherent blue photoluminescence has been recently described

Increased investigation into the development of macromolecular fluorophores has resulted in the synthesis and discovery of several potential candidates. These include modified and polymeric based dendritic structures, hyperbranched polymers and linear polymers. Strong inherent blue photoluminescence has been recently described in linear polyamine polymers in the absence of any chemical modifications. Here we describe the screening of amine/polyamine compounds for inherent photoluminescence. Several compounds that exhibited strong inherent blue photoluminescence following excitation with UV light were identified. Furthermore we demonstrated successful synthesis of poly(amino ether) polymers as well as chemically cross-linked poly(amino ether) thermosets with the lead Pentaethylenehexamine which was found to have strong inherent blue photoluminescence. The polymers and thermosets were found to retain the photoluminescent properties of the original lead compound. The polymers and thermosets were investigated for their ability to sequester heavy metals from aqueous solutions. An increased decrease in initial photoluminescence was observed as the materials were incubated with increasing metal salt concentration as a result of metal binding sequestration. The poly(amino ether) polymers were found to have higher sensitivity for metal sequestration when compared to equivalent amount of linear 25 kDa polyethylenimine. The strong inherent blue photoluminescence and the ease of synthesis of the poly(amino ether) polymers and thermosets give these materials strong potential for future applications as sensors.

Contributors

Agent

Created

Date Created
2015-05

135442-Thumbnail Image.png

A Stability Study of the MOF-5 Membrane

Description

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.

Contributors

Agent

Created

Date Created
2016-05

134902-Thumbnail Image.png

Bi-phase Synthesis of the Zirconium Metal-Organic Framework, UiO-66

Description

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.

Contributors

Agent

Created

Date Created
2016-12

134702-Thumbnail Image.png

Photocurable Networks: A Composite Materials Platform that Enables Advances in Additive Manufacturing

Description

This study aims to provide a foundation for future work on photo-responsive polymer composite materials to be utilized in additive manufacturing processes. The curing rate of 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) in thin (<20 µm) and thick (>2 mm) layers of DMPA

This study aims to provide a foundation for future work on photo-responsive polymer composite materials to be utilized in additive manufacturing processes. The curing rate of 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) in thin (<20 µm) and thick (>2 mm) layers of DMPA and poly(ethylene glycol) diacrylate (PEG-DA) mixtures was assessed for 5.0 w/v% (grams per 100 mL) concentrations of DMPA dissolved in PEG-DA. The polymerization rate and quality of curing was found to decrease as the concentration of DMPA increased beyond 1.0 w/v%; thus, confirming the existence of an optimum photo-initiator concentration for a specific sheet thickness. The optimum photo-initiator concentration for a 3-3.1 mm thick sheet of PEG-DA microstructure was determined to be between 0.3 and 0.38 w/v% DMPA. The addition of 1,6-hexanediol or 1,3-butanediol to the optimum photo-initiator concentrated solution of DMPA and PEG-DA was found to increase the Tg of the samples; however, the samples could not fully cure within 40-50 s, which suggested a decrease in polymerization rate. Lastly, the DMPA photo-initiator does not produce gaseous byproducts and is translucent when fully cured, which makes it attractive for infusion with strengthening materials because quality light penetration is paramount to quick polymerization rates. It is recommended that more trials be conducted to evaluate the mechanical properties of the optimum curing rate for DMPA and PEG-DA microstructures as well as a mechanical property comparison following the addition of either of the two alcohols.

Contributors

Agent

Created

Date Created
2016-12

134977-Thumbnail Image.png

A Model of Nanoparticle Dispersion in Electrospun Nanofibers

Description

Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently,

Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC, and none for electrospun PNC fibers. A simulation model was developed to quantify the effects of nanoparticle volume loading and fiber to particle diameter ratios on the dispersion in a nanofiber. The dispersion was characterized using the interparticle distance along the fiber. Distributions of the interparticle distance were fit to Weibull distributions and a two-parameter empirical equation for the mean and standard deviation was found. A dispersion factor was defined to quantify the dispersion along the polymer fiber. This model serves as a standard for comparison for future experimental studies through its comparability with microscopy techniques, and as way to quantify and predict dispersion in polymer-nanoparticle electrospinning systems with a single performance metric.

Contributors

Agent

Created

Date Created
2016-12

164958-Thumbnail Image.png

Millman Final Project (Spring 2022)

Description

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably 3D-print conjugated polymers has the potential to impact a variety of industries (personalized technology, medical treatment, replacement of metals, etc).

Contributors

Agent

Created

Date Created
2022-05

164959-Thumbnail Image.png

Millman Thesis Defense Presentation (Spring 2022)

Description

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably 3D-print conjugated polymers has the potential to impact a variety of industries (personalized technology, medical treatment, replacement of metals, etc).

Contributors

Agent

Created

Date Created
2022-05