Matching Items (3)
Filtering by

Clear all filters

150501-Thumbnail Image.png
Description
Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux

Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux (CHF) in the channels using R134a in a pumped refrigerant loop (PRL). To change orifice size, a dam controlled with a micrometer was placed in front of 31 parallel microchannels. Each channel had a hydraulic diameter of 0.235 mm and a length of 1.33 cm. For steady state two-phase conditions, mass fluxes of 300 kg m-2 s-1 and 600 kg m-2 s-1were investigated. For orifice sizes with a hydraulic diameter to unrestricted hydraulic diameter (Dh:Dh,ur) ratio less than 35 percent, oscillations were reduced and wall temperatures fell up to 1.5 °C. Critical heat flux data were obtained for 7 orifice sizes with mass fluxes from 186 kg m-2 s-1 to 847 kg m-2 s-1. For all mass fluxes and inlet conditions tested, CHF values for a Dh:Dh,ur ratio of 1.8 percent became increasingly lower (up to 37 W cm-2 less) than those obtained with larger orifices. An optimum orifice size with Dh:Dh,ur of 35 percent emerged, offering up to 5 W cm-2 increase in CHF over unrestricted conditions at the highest mass flux tested, 847 kg m-2 s-1. These improvements in cooling ability with inlet orifices in place under both steady-state and impending CHF conditions are modest, leading to the conclusion that inlet orifices are only mildly effective at improving heat transfer coefficients. Stability of the PRL used for experimentation was also studied and improved. A vapor compression cycle's (VCC) proportional, integral, and derivative controller was found to adversely affect stability within the PRL and cause premature CHF. Replacing the VCC with an ice water heat sink maintained steady pumped loop system pressures and mass flow rates. The ice water heat sink was shown to have energy cost savings over the use of a directly coupled VCC for removing heat from the PRL.
ContributorsOdom, Brent A (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Trimble, Steve (Committee member) / Tasooji, Amaneh (Committee member) / Holcomb, Don (Committee member) / Arizona State University (Publisher)
Created2012
133232-Thumbnail Image.png
Description
Growing up in Ghana West Africa, I realized there were a few major obstacles hindering the education of the youth. One of them was the consistent supply of all year-round power. Therefore, pursuing a career in power electronics, I decided to research and implement a budget-friendly DC-AC converter that can

Growing up in Ghana West Africa, I realized there were a few major obstacles hindering the education of the youth. One of them was the consistent supply of all year-round power. Therefore, pursuing a career in power electronics, I decided to research and implement a budget-friendly DC-AC converter that can take power from a DC source such as a solar panel to make AC power, suitable for grid-implementation. This project was undertaken with two other colleagues (Ian Vogt and Brett Fennelly), as our Senior Design Capstone project. My colleagues primarily researched into the "advanced" part of the converter such as Volt-VAR, Maximum Power Point Tracking (MPPT), and variable power factor, making the Capstone project be dubbed as "Smart Inverter". In this paper, I elaborate on the entire process of my research and simulation, through the design and layout of the PCB board to milling, soldering and testing. That was my contribution to the capstone project. After testing the board, it was concluded that although the inverter was intended to be the very inexpensive, some electrical and design principles could not be compromised. The converter did successfully invert DC power to AC, but it was only at low voltage levels; it could not withstand the higher voltages. This roadblock stymied the testing of advanced functionalities, paving way for an avenue of further research and implementation.
ContributorsAsigbekye, John (Author) / Ayyanar, Raja (Thesis director) / Sedillo, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
161459-Thumbnail Image.png
Description
This paper introduces an application space of Power over Ethernet to Universal Serial Bus (USB) Power Delivery, and develops 3 different flyback approaches to a 45 Watt solution in the space. The designs of Fixed Frequency Flyback, Quasi-Resonant Flyback, and Active Clamp Flyback are developed for the application with 37

This paper introduces an application space of Power over Ethernet to Universal Serial Bus (USB) Power Delivery, and develops 3 different flyback approaches to a 45 Watt solution in the space. The designs of Fixed Frequency Flyback, Quasi-Resonant Flyback, and Active Clamp Flyback are developed for the application with 37 Volts (V) to 57 V Direct Current (DC) input voltage and 5 V, 9 V, 15 V, and 20 V output, and results are examined for the given specifications. Implementation based concerns are addressed for each topology during the design process. The systems are proven and tested for efficiency, thermals, and output voltage ripple across the operation range. The topologies are then compared for a cost and benefit analysis and their highlights are identified to showcase each systems prowess.
ContributorsNasir, Anthony Michael (Author) / Ayyanar, Raja (Thesis advisor) / Lei, Qin (Committee member) / Hari, Ajay (Committee member) / Arizona State University (Publisher)
Created2021