Matching Items (3)
Filtering by

Clear all filters

136804-Thumbnail Image.png
Description
The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook

The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook design techniques to discover how applicable published interface design concepts are in practice. Four variations of a software package were deployed to end users. Each variation contained different design techniques. Surveyed users responded positively to interface design practices that were consistent and easy to learn. This followed textbook expectations. Users however responded poorly to customization options, an important feature according to textbook material. The study made conservative changes to the four interface variations provided to end-users. A more liberal approach may have yielded additional results.
ContributorsSmith, Andrew David (Author) / Nakamura, Mutsumi (Thesis director) / Gottesman, Aaron (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
137541-Thumbnail Image.png
Description
Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices

Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices are beginning to make use of multiple different input types, and will likely continue to do so. With this happening, users need to be able to interact with single applications through a variety of ways without having to change the design or suffer a loss of functionality. This is important because having only one user interface, UI, across all input types is makes it easier for the user to learn and keeps all interactions consistent across the application. Some of the main input types in use today are touch screens, mice, microphones, and keyboards; all seen in Figure 1 below. Current design methods tend to focus on how well the users are able to learn and use a computing system. It is good to focus on those aspects, but it is important to address the issues that come along with using different input types, or in this case, multiple input types. UI design for touch screens, mice, microphones, and keyboards each requires satisfying a different set of needs. Due to this trend in single devices being used in many different input configurations, a "fully functional" UI design will need to address the needs of multiple input configurations. In this work, clashing concerns are described for the primary input sources for computers and suggests methodologies and techniques for designing a single UI that is reasonable for all of the input configurations.
ContributorsJohnson, David Bradley (Author) / Calliss, Debra (Thesis director) / Wilkerson, Kelly (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
137375-Thumbnail Image.png
Description
Smartphones have become increasingly common over the past few years, and mobile games continue to be the most common type of application (Apple, Inc., 2013). For many people, the social aspect of gaming is very important, and thus most mobile games include support for playing with multiple players. However, there

Smartphones have become increasingly common over the past few years, and mobile games continue to be the most common type of application (Apple, Inc., 2013). For many people, the social aspect of gaming is very important, and thus most mobile games include support for playing with multiple players. However, there is a lack of common knowledge about which implementation of this functionality is most favorable from a development standpoint. In this study, we evaluate three different types of multiplayer gameplay (pass-and-play, Bluetooth, and GameCenter) via development cost and user interviews. We find that pass-and-play, the most easily-implemented mode, is not favored by players due to its inconvenience. We also find that GameCenter is not as well favored as expected due to latency of GameCenter's servers, and that Bluetooth multiplayer is the most well favored for social play due to its similarity to real-life play. Despite there being a large overhead in developing and testing Bluetooth and GameCenter multiplayer due to Apple's development process, this is irrelevant since professional developers must enroll in this process anyway. Therefore, the most effective multiplayer mode to develop is mostly determined by whether Internet play is desirable: Bluetooth if not, GameCenter if so. Future studies involving more complete development work and more types of multiplayer modes could yield more promising results.
ContributorsBradley, Michael Robert (Author) / Collofello, James (Thesis director) / Wilkerson, Kelly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12