Matching Items (2)
Filtering by

Clear all filters

153220-Thumbnail Image.png
Description
Energy consumption of the data centers worldwide is rapidly growing fueled by ever-increasing demand for Cloud computing applications ranging from social networking to e-commerce. Understandably, ensuring energy-efficiency and sustainability of Cloud data centers without compromising performance is important for both economic and environmental reasons. This dissertation develops a cyber-physical multi-tier

Energy consumption of the data centers worldwide is rapidly growing fueled by ever-increasing demand for Cloud computing applications ranging from social networking to e-commerce. Understandably, ensuring energy-efficiency and sustainability of Cloud data centers without compromising performance is important for both economic and environmental reasons. This dissertation develops a cyber-physical multi-tier server and workload management architecture which operates at the local and the global (geo-distributed) data center level. We devise optimization frameworks for each tier to optimize energy consumption, energy cost and carbon footprint of the data centers. The proposed solutions are aware of various energy management tradeoffs that manifest due to the cyber-physical interactions in data centers, while providing provable guarantee on the solutions' computation efficiency and energy/cost efficiency. The local data center level energy management takes into account the impact of server consolidation on the cooling energy, avoids cooling-computing power tradeoff, and optimizes the total energy (computing and cooling energy) considering the data centers' technology trends (servers' power proportionality and cooling system power efficiency). The global data center level cost management explores the diversity of the data centers to minimize the utility cost while satisfying the carbon cap requirement of the Cloud and while dealing with the adversity of the prediction error on the data center parameters. Finally, the synergy of the local and the global data center energy and cost optimization is shown to help towards achieving carbon neutrality (net-zero) in a cost efficient manner.
ContributorsAbbasi, Zahra (Author) / Gupta, Sandeep K. S. (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Shrivastava, Aviral (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2014
154096-Thumbnail Image.png
Description
Virtual machines and containers have steadily improved their performance over time as a result of innovations in their architecture and software ecosystems. Network functions and workloads are increasingly migrating to virtual environments, supported by developments in software defined networking (SDN) and network function virtualization (NFV). Previous performance analyses

Virtual machines and containers have steadily improved their performance over time as a result of innovations in their architecture and software ecosystems. Network functions and workloads are increasingly migrating to virtual environments, supported by developments in software defined networking (SDN) and network function virtualization (NFV). Previous performance analyses of virtual systems in this context often ignore significant performance gains that can be acheived with practical modifications to hypervisor and host systems. In this thesis, the network performance of containers and virtual machines are measured with standard network performance tools. The performance of these systems utilizing a standard 3.18.20 Linux kernel is compared to that of a realtime-tuned variant of the same kernel. This thesis motivates improving determinism in virtual systems with modifications to host and guest kernels and thoughtful process isolation. With the system modifications described, the median TCP bandwidth of KVM virtual machines over bridged network interfaces, is increased by 10.8% with a corresponding reduction in standard deviation of 87.6%. Docker containers see a 8.8% improvement in median bandwidth and 4.4% reduction in standard deviation of TCP measurements using similar bridged networking. System tuning also reduces the standard deviation of TCP request/response latency (TCP RR) over bridged interfaces by 86.8% for virtual machines and 97.9% for containers. Hardware devices assigned to virtual systems also see reductions in variance, although not as noteworthy.
ContributorsWelch, James Matthew (Author) / Syrotiuk, Violet R. (Thesis advisor) / Wu, Carole-Jean (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2015