Matching Items (3)

133184-Thumbnail Image.png

Twitter Sentiment Analysis For Bitcoin Price Prediction

Description

Cryptocurrencies are notorious for its volatility. But with its incredible rise in price, Bitcoin keep being on the top among the trending topics on social media. Although doubts continue to

Cryptocurrencies are notorious for its volatility. But with its incredible rise in price, Bitcoin keep being on the top among the trending topics on social media. Although doubts continue to rise with price, Bloomberg even make critics on Bitcoin as ‘the biggest bubble in the history’, some investors still hold strong enthusiasm and confidence towards Bitcoin. As contradicting opinions increase, it is worthy to dive into discussions on social media and use a scientific method to evaluate public’s non-negligible role in crypto price fluctuation.

Sentiment analysis, which is a notably method in text mining, can be used to extract the sentiment from people’s opinion. It then provides us with valuable perception on a topic from the public’s attitude, which create more opportunities for deeper analysis and prediction.

The thesis aims to investigate public’s sentiment towards Bitcoin through analyzing 10 million Bitcoin related tweets and assigning sentiment points on tweets, then using sentiment fluctuation as a factor to predict future crypto fluctuation. Price prediction is achieved by using a machine learning model called Recurrent Neural Network which automatically learns the pattern and generate following results with memory. The analysis revels slight connection between sentiment and crypto currency and the Neural Network model showed a strong connection between sentiment score and future price prediction.

Contributors

Agent

Created

Date Created
  • 2018-12

147587-Thumbnail Image.png

Data Representation for Predicting Harmonic Clusters with LSTM

Description

The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is

The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is done by training various Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) on the lead sheets of 100 different jazz standards. A total of 200 unique datasets were produced and tested, resulting in the prediction of nearly 51 million chords. A note-prediction accuracy of 82.1% and a chord-prediction accuracy of 34.5% were achieved across all datasets. Methods of data representation that were rooted in valid music theory frameworks were found to increase the efficacy of harmonic prediction by up to 6%. Optimal LSTM input sizes were also determined for each method of data representation.

Contributors

Agent

Created

Date Created
  • 2021-05

158101-Thumbnail Image.png

Sequencing Behavior in an Intelligent Pro-active Co-Driver System

Description

Driving is the coordinated operation of mind and body for movement of a vehicle, such as a car, or a bus. Driving, being considered an everyday activity for many people,

Driving is the coordinated operation of mind and body for movement of a vehicle, such as a car, or a bus. Driving, being considered an everyday activity for many people, still has an issue of safety. Driver distraction is becoming a critical safety problem. Speed, drunk driving as well as distracted driving are the three leading factors in the fatal car crashes. Distraction, which is defined as an excessive workload and limited attention, is the main paradigm that guides this research area. Driver behavior analysis can be used to address the distraction problem and provide an intelligent adaptive agent to work closely with the driver, fay beyond traditional algorithmic computational models. A variety of machine learning approaches has been proposed to estimate or predict drivers’ fatigue level using car data, driver status or a combination of them.

Three important features of intelligence and cognition are perception, attention and sensory memory. In this thesis, I focused on memory and attention as essential parts of highly intelligent systems. Without memory, systems will only show limited intelligence since their response would be exclusively based on spontaneous decision without considering the effect of previous events. I proposed a memory-based sequence to predict the driver behavior and distraction level using neural network. The work started with a large-scale experiment to collect data and make an artificial intelligence-friendly dataset. After that, the data was used to train a deep neural network to estimate the driver behavior. With a focus on memory by using Long Short Term Memory (LSTM) network to increase the level of intelligence in two dimensions: Forgiveness of minor glitches, and accumulation of anomalous behavior., I reduced the model error and computational expense by adding attention mechanism on the top of LSTM models. This system can be generalized to build and train highly intelligent agents in other domains.

Contributors

Agent

Created

Date Created
  • 2020