Matching Items (1)
133177-Thumbnail Image.png
Description
From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how

From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how these policies interact with hydroclimatic variability. As explanatory variables in multiple linear regression (MLR) models, water use policies were found to be significant at both the zip code and city levels. Policies that specifically target behavioral changes were significant mathematical drivers of water use in city-level models. Policy data was aggregated into a timeline and coded based on categories including user type, whether the policy was voluntary or mandatory, the targeted water use type, and whether the change in question concerns active or passive conservation. The analyzed policies include but are not limited to state drought declarations, regulatory municipal ordinances, and incentive programs for household appliances. Spatial averages of available hydroclimatic data have been computed and validated using inverse distance weighting methods. The data was aggregated at the zip code level to be comparable to the available water use data for use in MLR models. Factors already known to affect water use, such as temperature, precipitation, income, and water stress, were brought into the MLR models as explanatory variables. After controlling for these factors, the timeline policies were brought into the model as coded variables to test their effect on water demand during the years 2000-2017. Clearly identifying which policy traits are effective will inform future policymaking in cities aiming to conserve water. The findings suggest that drought-related policies impact per capita urban water use. The results of the city level MLR models indicate that implementation of mandatory policies that target water use behaviors effectively reduce water use. Temperature, income, unemployment, and the WaSSI were also observed to be mathematical drivers of water use. Interaction effects between policies and the WaSSI were statistically significant at both model scales.
ContributorsHjelmstad, Annika Margaret (Author) / Garcia, Margaret (Thesis director) / Larson, Kelli (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12