Matching Items (4)
Filtering by

Clear all filters

151688-Thumbnail Image.png
Description
This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version

This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version was a business-as-usual traditional classroom teaching mathematics with direct instruction. The 2rd version of the course provided students with self-paced, individualized Algebra instruction with a web-based, intelligent tutor. The 3rd version of the course coupled self-paced, individualized instruction on the web-based, intelligent Algebra tutor coupled with a series of e-learning modules on self-regulated learning knowledge and skills that were distributed throughout the semester. A quasi-experimental, mixed methods evaluation design was used by assigning pre-registered, high-school remedial Algebra I class periods made up of an approximately equal number of students to one of the three study conditions or course versions: (a) the control course design, (b) web-based, intelligent tutor only course design, and (c) web-based, intelligent tutor + SRL e-learning modules course design. While no statistically significant differences on SRL skills, math achievement or motivation were found between the three conditions, effect-size estimates provide suggestive evidence that using the SRL e-learning modules based on ARCS motivation model (Keller, 2010) and Let Me Learn learning pattern instruction (Dawkins, Kottkamp, & Johnston, 2010) may help students regulate their learning and improve their study skills while using a web-based, intelligent Algebra tutor as evidenced by positive impacts on math achievement, motivation, and self-regulated learning skills. The study also explored predictive analyses using multiple regression and found that predictive models based on independent variables aligned to student demographics, learning mastery skills, and ARCS motivational factors are helpful in defining how to further refine course design and design learning evaluations that measure achievement, motivation, and self-regulated learning in web-based learning environments, including intelligent tutoring systems.
ContributorsBarrus, Angela (Author) / Atkinson, Robert K (Thesis advisor) / Van de Sande, Carla (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
156508-Thumbnail Image.png
Description
A recorded tutorial dialogue can produce positive learning gains, when observed and used to promote discussion between a pair of learners; however, this same effect does not typically occur when an leaner observes a tutorial dialogue by himself or herself. One potential approach to enhancing learning in the latter situation

A recorded tutorial dialogue can produce positive learning gains, when observed and used to promote discussion between a pair of learners; however, this same effect does not typically occur when an leaner observes a tutorial dialogue by himself or herself. One potential approach to enhancing learning in the latter situation is by incorporating self-explanation prompts, a proven technique for encouraging students to engage in active learning and attend to the material in a meaningful way. This study examined whether learning from observing recorded tutorial dialogues could be made more effective by adding self-explanation prompts in computer-based learning environment. The research questions in this two-experiment study were (a) Do self-explanation prompts help support student learning while watching a recorded dialogue? and (b) Does collaboratively observing (in dyads) a tutorial dialogue with self-explanation prompts help support student learning while watching a recorded dialogue? In Experiment 1, 66 participants were randomly assigned as individuals to a physics lesson (a) with self-explanation prompts (Condition 1) or (b) without self-explanation prompts (Condition 2). In Experiment 2, 20 participants were randomly assigned in 10 pairs to the same physics lesson (a) with self-explanation prompts (Condition 1) or (b) without self-explanation prompts (Condition 2). Pretests and posttests were administered, as well as other surveys that measured motivation and system usability. Although supplemental analyses showed some significant differences among individual scale items or factors, neither primary results for Experiment 1 or Experiment 2 were significant for changes in posttest scores from pretest scores for learning, motivation, or system usability assessments.
ContributorsWright, Kyle Matthew (Author) / Atkinson, Robert K (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2018
156774-Thumbnail Image.png
Description
Research has shown that the learning processes can be enriched and enhanced with the presence of affective interventions. The goal of this dissertation was to design, implement, and evaluate an affective agent that provides affective support in real-time in order to enrich the student’s learning experience and performance by inducing

Research has shown that the learning processes can be enriched and enhanced with the presence of affective interventions. The goal of this dissertation was to design, implement, and evaluate an affective agent that provides affective support in real-time in order to enrich the student’s learning experience and performance by inducing and/or maintaining a productive learning path. This work combined research and best practices from affective computing, intelligent tutoring systems, and educational technology to address the design and implementation of an affective agent and corresponding pedagogical interventions. It included the incorporation of the affective agent into an Exploratory Learning Environment (ELE) adapted for this research.

A gendered, three-dimensional, animated, human-like character accompanied by text- and speech-based dialogue visually represented the proposed affective agent. The agent’s pedagogical interventions considered inputs from the ELE (interface, model building, and performance events) and from the user (emotional and cognitive events). The user’s emotional events captured by biometric sensors and processed by a decision-level fusion algorithm for a multimodal system in combination with the events from the ELE informed the production-rule-based behavior engine to define and trigger pedagogical interventions. The pedagogical interventions were focused on affective dimensions and occurred in the form of affective dialogue prompts and animations.

An experiment was conducted to assess the impact of the affective agent, Hope, on the student’s learning experience and performance. In terms of the student’s learning experience, the effect of the agent was analyzed in four components: perception of the instructional material, perception of the usefulness of the agent, ELE usability, and the affective responses from the agent triggered by the student’s affective states.

Additionally, in terms of the student’s performance, the effect of the agent was analyzed in five components: tasks completed, time spent solving a task, planning time while solving a task, usage of the provided help, and attempts to successfully complete a task. The findings from the experiment did not provide the anticipated results related to the effect of the agent; however, the results provided insights to improve diverse components in the design of affective agents as well as for the design of the behavior engines and algorithms to detect, represent, and handle affective information.
ContributorsChavez Echeagaray, Maria Elena (Author) / Atkinson, Robert K (Thesis advisor) / Burleson, Winslow (Thesis advisor) / Graesser, Arthur C. (Committee member) / VanLehn, Kurt (Committee member) / Walker, Erin A (Committee member) / Arizona State University (Publisher)
Created2018
155361-Thumbnail Image.png
Description
This dissertation proposes a new set of analytical methods for high dimensional physiological sensors. The methodologies developed in this work were motivated by problems in learning science, but also apply to numerous disciplines where high dimensional signals are present. In the education field, more data is now available from traditional

This dissertation proposes a new set of analytical methods for high dimensional physiological sensors. The methodologies developed in this work were motivated by problems in learning science, but also apply to numerous disciplines where high dimensional signals are present. In the education field, more data is now available from traditional sources and there is an important need for analytical methods to translate this data into improved learning. Affecting Computing which is the study of new techniques that develop systems to recognize and model human emotions is integrating different physiological signals such as electroencephalogram (EEG) and electromyogram (EMG) to detect and model emotions which later can be used to improve these learning systems.

The first contribution proposes an event-crossover (ECO) methodology to analyze performance in learning environments. The methodology is relevant to studies where it is desired to evaluate the relationships between sentinel events in a learning environment and a physiological measurement which is provided in real time.

The second contribution introduces analytical methods to study relationships between multi-dimensional physiological signals and sentinel events in a learning environment. The methodology proposed learns physiological patterns in the form of node activations near time of events using different statistical techniques.

The third contribution addresses the challenge of performance prediction from physiological signals. Features from the sensors which could be computed early in the learning activity were developed for input to a machine learning model. The objective is to predict success or failure of the student in the learning environment early in the activity. EEG was used as the physiological signal to train a pattern recognition algorithm in order to derive meta affective states.

The last contribution introduced a methodology to predict a learner's performance using Bayes Belief Networks (BBNs). Posterior probabilities of latent nodes were used as inputs to a predictive model in real-time as evidence was accumulated in the BBN.

The methodology was applied to data streams from a video game and from a Damage Control Simulator which were used to predict and quantify performance. The proposed methods provide cognitive scientists with new tools to analyze subjects in learning environments.
ContributorsLujan Moreno, Gustavo A. (Author) / Runger, George C. (Thesis advisor) / Atkinson, Robert K (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Villalobos, Rene (Committee member) / Arizona State University (Publisher)
Created2017