Matching Items (5)
Filtering by

Clear all filters

152068-Thumbnail Image.png
Description
Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant

Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant improvements in motor function is rarely given due to the constraints of our current health care system. Research reported in this dissertation contributes towards developing adjuvant therapies that may augment the impact of motor rehabilitation and improve functional outcome. These studies have demonstrated reorganization of maps within motor cortex as a function of experience in both healthy and brain-injured animals by using intracortical microstimulation technique. Furthermore, synaptic plasticity has been identified as a key neural mechanism in directing motor map plasticity, evidenced by restoration of movement representations within the spared cortical tissue accompanied by increase in synapse number translating into motor improvement after stroke. There is increasing evidence that brain-derived neurotrophic factor (BDNF) modulates synaptic and morphological plasticity in the developing and mature nervous system. Unfortunately, BDNF itself is a poor candidate because of its short half-life, low penetration through the blood brain barrier, and activating multiple receptor units, p75 and TrkB on the neuronal membrane. In order to circumvent this problem efficacy of two recently developed novel TrkB agonists, LM22A-4 and 7,8-dihydroxyflavone, that actively penetrate the blood brain barrier and enhance functional recovery. Findings from these dissertation studies indicate that administration of these pharmacological compounds, accompanied by motor rehabilitation provide a powerful therapeutic tool for stroke recovery.
ContributorsWarraich, Zuha (Author) / Kleim, Jeffrey A (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Tillery, Stephen-Helms (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
Description
As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential

As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential media systems, applies hybrid knowledge synthesized across multiple disciplines to address challenges relevant to daily experience. Interactive neurorehabilitation (INR) aims to enhance functional movement therapy by integrating detailed motion capture with interactive feedback in a manner that facilitates engagement and sensorimotor learning for those who have suffered neurologic injury. While INR shows great promise to advance the current state of therapies, a cohesive media design methodology for INR is missing due to the present lack of substantial evidence within the field. Using an experiential media based approach to draw knowledge from external disciplines, this dissertation proposes a compositional framework for authoring visual media for INR systems across contexts and applications within upper extremity stroke rehabilitation. The compositional framework is applied across systems for supervised training, unsupervised training, and assisted reflection, which reflect the collective work of the Adaptive Mixed Reality Rehabilitation (AMRR) Team at Arizona State University, of which the author is a member. Formal structures and a methodology for applying them are described in detail for the visual media environments designed by the author. Data collected from studies conducted by the AMRR team to evaluate these systems in both supervised and unsupervised training contexts is also discussed in terms of the extent to which the application of the compositional framework is supported and which aspects require further investigation. The potential broader implications of the proposed compositional framework and methodology are the dissemination of interdisciplinary information to accelerate the informed development of INR applications and to demonstrate the potential benefit of generalizing integrative approaches, merging arts and science based knowledge, for other complex problems related to embodied learning.
ContributorsLehrer, Nicole (Author) / Rikakis, Thanassis (Committee member) / Olson, Loren (Committee member) / Wolf, Steven L. (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014
153158-Thumbnail Image.png
Description
Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy

Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy to the home. Currently, there are a variety of approaches to INR design, which coupled with minimal large-scale clinical data, has led to a lack of cohesion in INR design. INR design presents an inherently complex space as these systems have multiple users including stroke survivors, therapists and designers, each with their own user experience needs. This dissertation proposes that comprehensive INR design, which can address this complex user space, requires and benefits from the application of interdisciplinary research that spans motor learning and interactive learning. A methodology for integrated and iterative design approaches to INR task experience, assessment, hardware, software and interactive training protocol design is proposed within the comprehensive example of design and implementation of a mixed reality rehabilitation system for minimally supervised environments. This system was tested with eight stroke survivors who showed promising results in both functional and movement quality improvement. The results of testing the system with stroke survivors as well as observing user experiences will be presented along with suggested improvements to the proposed design methodology. This integrative design methodology is proposed to have benefit for not only comprehensive INR design but also complex interactive system design in general.
ContributorsBaran, Michael (Author) / Rikakis, Thanassis (Thesis advisor) / Olson, Loren (Thesis advisor) / Wolf, Steven L. (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
150080-Thumbnail Image.png
Description
Treatment of cerebral aneurysms using non-invasive methods has existed for decades. Since the advent of modern endovascular techniques, advancements to embolic materials have largely focused on improving platinum coil technology. However, the recent development of Onyx®, a liquid-delivery precipitating polymer system, has opened the door for a new class of

Treatment of cerebral aneurysms using non-invasive methods has existed for decades. Since the advent of modern endovascular techniques, advancements to embolic materials have largely focused on improving platinum coil technology. However, the recent development of Onyx®, a liquid-delivery precipitating polymer system, has opened the door for a new class of embolic materials--liquid-fill systems. These liquid-fill materials have the potential to provide better treatment outcomes than platinum coils. Initial clinical use of Onyx has proven promising, but not without substantial drawbacks, such as co-delivery of angiotoxic compounds and an extremely technical delivery procedure. This work focuses on formulation, characterization and testing of a novel liquid-to-solid gelling polymer system, based on poly(propylene glycol) diacrylate (PPODA) and pentaerythritol tetrakis(3-mercaptopropionate) (QT). The PPODA-QT system bypasses difficulties associated with Onyx embolization, yet still maintains non-invasive liquid delivery--exhibiting the properties of an ideal embolic material for cerebral aneurysm embolization. To allow for material visibility during clinical delivery, an embolic material must be radio-opaque. The PPODA-QT system was formulated with commercially available contrast agents and the gelling kinetics were studied, as a complete understanding of the gelling process is vital for clinical use. These PPODA-QT formulations underwent in vitro characterization of material properties including cytotoxicity, swelling, and degradation behaviors. Formulation and characterization tests led to an optimized PPODA-QT formulation that was used in subsequent in vivo testing. PPODA-QT formulated with the liquid contrast agent ConrayTM was used in the first in vivo studies. These studies employed a swine aneurysm model to assess initial biocompatibility and test different delivery strategies of PPODA-QT. Results showed good biocompatibility and a suitable delivery strategy, providing justification for further in vivo testing. PPODA-QT was then used in a small scale pilot study to gauge long-term effectiveness of the material in a clinically-relevant aneurysm model. Results from the pilot study showed that PPODA-QT has the capability to provide successful, long-term treatment of model aneurysms as well as facilitate aneurysm healing.
ContributorsRiley, Celeste (Author) / Vernon, Brent L (Thesis advisor) / Preul, Mark C (Committee member) / Frakes, David (Committee member) / Pauken, Christine (Committee member) / Massia, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
133129-Thumbnail Image.png
Description
Vascular inflammation is a key component for cerebrovascular disease and ischemic injury is suggested to be a significant contributor, resulting in either myocardial ischemia or stroke. A strong inflammatory response is characterized by the release of inflammatory cytokines, thus producing and/or activating pro-inflammatory proteins in the cell. Our previous studies

Vascular inflammation is a key component for cerebrovascular disease and ischemic injury is suggested to be a significant contributor, resulting in either myocardial ischemia or stroke. A strong inflammatory response is characterized by the release of inflammatory cytokines, thus producing and/or activating pro-inflammatory proteins in the cell. Our previous studies have demonstrated that hypoxia plus glucose deprivation (HGD), an in vitro model of ischemia, increases the proinflammatory mediator, cyclooxygenase-2 levels (COX-2), in vascular tissues. Nuclear factor kappa B (NF-κB) activation is an upstream transcription factor of COX-2 and had been suggested to be involved in “sterile” inflammation in experimental stroke models. Mechanisms underlying the development and progression of inflammation in the cerebrovasculature following ischemic injury in human tissue has not been addressed. Thus, the purpose of this study was to examine the impact of HGD on NF-κB expression and activation in human brain vascular smooth muscle cells (HBVSMC). In addition, we assessed pro-inflammatory mediator levels of downstream NF-κB transcription products, COX-2 and iNOS, and level of its upstream receptor, TLR4. Primary HBVSMC at passage 7 were treated with normoxia (room air) or HGD (1% O2). Following exposure to HGD (3h), cells were isolated, homogenized, and total protein content determined. Lysates, either whole cell or nuclear and cytosolic fractions, were prepped for western blot and analysis. Anti-α-smooth muscle actin was used to verify HBVSMC origin and -actin was used as a loading control. NF-κBp65, phosphorylated NF-κBp65, COX-2, and TLR4 protein levels were all measured post HGD. NF-κBp65 total protein was expressed in HBVSMC and a trend for an increase in levels following HGD was observed. Indirect activation of pNF-kBp65 was assessed via nuclear fractionation studies and was increased following HGD. Lamin AC was used to verify nuclear fractionation. Additional findings suggested that HBVSMC expressed TLR4 however, total protein levels of TLR4 were not altered by HGD. COX-2 and iNOS protein levels were also increased following HGD. In conclusion, these studies indicate that HGD alters proinflammatory enzyme levels, potentially by altering NF-κBp65 activation in human vascular smooth muscle cells. Funding Support: University of Arizona Sarver Heart Center and University of Arizona Valley Research Project Grant VRP P1 (RG).
ContributorsRahman, Sanna (Author) / Sweazea, Karen (Thesis director) / Gonzales, Rayna (Committee member) / Li, Yu-Jing (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12