Matching Items (1)

Filtering by

Clear all filters

134603-Thumbnail Image.png

Relationship Between College Baseball Conferences and Average Offensive Production of Major League Baseball Players

Description

Beginning with the publication of Moneyball by Michael Lewis in 2003, the use of sabermetrics \u2014 the application of statistical analysis to baseball records - has exploded in major league

Beginning with the publication of Moneyball by Michael Lewis in 2003, the use of sabermetrics \u2014 the application of statistical analysis to baseball records - has exploded in major league front offices. Executives Billy Beane, Paul DePoedesta, and Theo Epstein are notable figures that have been successful in incorporating sabermetrics to their team's philosophy, resulting in playoff appearances and championship success. The competitive market of baseball, once dominated by the collusion of owners, now promotes innovative thought to analytically develop competitive advantages. The tiered economic payrolls of Major League Baseball (MLB) has created an environment in which large-market teams are capable of "buying" championships through the acquisition of the best available talent in free agency, and small-market teams are pushed to "build" championships through the drafting and systematic farming of high-school and college level players. The use of sabermetrics promotes both models of success \u2014 buying and building \u2014 by unbiasedly determining a player's productivity. The objective of this paper is to develop a regression-based predictive model that can be used by Majors League Baseball teams to forecast the MLB career average offensive performance of college baseball players from specific conferences. The development of this model required multiple tasks: I. Data was obtained from The Baseball Cube, a baseball records database providing both College and MLB data. II. Modifications to the data were applied to adjust for year-to-year formatting, a missing variable for seasons played, the presence of missing values, and to correct league identifiers. III. Evaluation of multiple offensive productivity models capable of handling the obtained dataset and regression forecasting technique. IV. SAS software was used to create the regression models and analyze the residuals for any irregularities or normality violations. The results of this paper find that there is a relationship between Division 1 collegiate baseball conferences and average career offensive productivity in Major Leagues Baseball, with the SEC having the most accurate reflection of performance.

Contributors

Agent

Created

Date Created
  • 2017-05