Matching Items (1)
Filtering by

Clear all filters

154177-Thumbnail Image.png
Description
Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies

Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies to separate mitochondrial sub-populations by size are thus needed to study the importance of this organelle in cellular functions. Additionally, challenges also exist in distinguishing the sub-populations of bio-species which differ in the surface charge while possessing similar size, such as Salmonella typhimurium (Salmonella). The surface charge of Salmonella wild-type is altered upon environmental stimulations, influencing the bacterial survival and virulence within the host tissue. Therefore, it is important to explore methods to identify the sub-populations of Salmonella.

This work exploits insulator-based dielectrophoresis (iDEP) for the manipulation of mitochondria and Salmonella. The iDEP migration and trapping of mitochondria were investigated under both DC and low-frequency AC conditions, establishing that mitochondria exhibit negative DEP. Also, the first realization of size-based iDEP sorting experiments of mitochondria were demonstrated. As for Salmonella, the preliminary study revealed positive DEP behavior. Distinct trapping potential thresholds were found for the sub-populations with different surface charges.

Further, DEP was integrated with a non-intuitive migration mechanism termed absolute negative mobility (ANM), inducing a deterministic trapping component which allows the directed transport of µm- and sub-µm sized (bio)particles in microfluidic devices with a nonlinear post array under the periodic action of electrokinetic and dielectrophoretic forces. Regimes were revealed both numerically and experimentally in which larger particles migrate against the average applied force, whereas smaller particles show normal response. Moreover, this deterministic ANM (dANM) was characterized with polystyrene beads demonstrating improved migration speed at least two orders of magnitude higher compared to previous ANM systems with similar sized colloids. In addition, dANM was induced for mitochondria with an AC-overlaid waveform representing the first demonstration of ANM migration with biological species. Thus, it is envisioned that the efficient size selectivity of this novel migration mechanism can be employed in nanotechnology, organelle sub-population studies or fractionating protein nanocrystals.
ContributorsLuo, Jinghui (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2015