Matching Items (51)
152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
ContributorsPrabhakar, Amlendu (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2013
153505-Thumbnail Image.png
Description
Spider dragline silk is an outstanding biopolymer with a strength that exceeds steel by weight and a toughness greater than high-performance fibers like Kevlar. For this reason, structural and dynamic studies on the spider silk are of great importance for developing future biomaterials. The spider dragline silk comprises two silk

Spider dragline silk is an outstanding biopolymer with a strength that exceeds steel by weight and a toughness greater than high-performance fibers like Kevlar. For this reason, structural and dynamic studies on the spider silk are of great importance for developing future biomaterials. The spider dragline silk comprises two silk proteins, Major ampullate Spidroin 1 and 2 (MaSp1 and 2), which are synthesized and stored in the major ampullate (MA) gland of spiders. The initial state of the silk proteins within Black Widow MA glands was probed with solution-state NMR spectroscopy. The conformation dependent chemical shifts information indicates that the silk proteins are unstructured and in random coil conformation. 15N relaxation parameters, T1, T2 and 15N-{1H} steady-state NOE were measured to probe the backbone dynamics for MA silk proteins. These measurements indicate fast sub-nanosecond timescale backbone dynamics for the repetitive core of spider MA proteins indicating that the silk proteins are unfolded, highly flexible random coils in the MA gland. The translational diffusion coefficients of the spider silk proteins within the MA gland were measured using 1H diffusion NMR at 1H sites from different amino acids. A phenomenon was observed where the measured diffusion coefficients decrease with an increase in the diffusion delay used. The mean displacement along the external magnetic field was found to be 0.35 μm and independent of the diffusion delay. The results indicate that the diffusion of silk protein was restricted due to intermolecular cross-linking with only segmental diffusion observable.

To understand how a spider converts the unfolded protein spinning dope into a highly structured and oriented in the super fiber,the effect of acidification on spider silk assembly was investigated on native spidroins from the major ampullate (MA) gland fluid excised from Latrodectus hesperus (Black Widow) spiders. The in vitro spider silk assembly kinetics were monitored as a function of pH with a 13C solid-state Magic Angle Spinning (MAS) NMR approach. The results confirm the importance of acidic pH in the spider silk self-assembly process with observation of a sigmoidal nucleation-elongation kinetic profile. The rates of nucleation and elongation and the percentage of β-sheet structure in the grown fibers depend on pH.

The secondary structure of the major ampullate silk from Peucetia viridians (Green Lynx) spiders was characterized by X-ray diffraction (XRD) and solid-state NMR spectroscopy. From XRD measurement, β-sheet nano-crystallites were observed that are highly oriented along the fiber axis with an orientational order of 0.980. Compare to the crystalline region, the amorphous region was found to be partially oriented with an orientational order of 0.887. Further, two dimensional 13C-13C through-space and through-bond solid-state NMR experiments provide structural analysis for the repetitive amino acid motifs in the silk proteins. The nano-crystallites are mainly alanine-rich β-sheet structures. The total percentage of crystalline region is determined to be 40.0±1.2 %. 18±1 % of alanine, 60±2 % glycine and 54±2 % serine are determined to be incorporated into helical conformations while 82±1 % of alanine, 40±3 % glycine and 46±2 % serine are in the β-sheet conformation.
ContributorsXu, Dian (Author) / Yarger, Jeffery L (Thesis advisor) / Holland, Gregory P (Thesis advisor) / Wang, Xu (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2015
153302-Thumbnail Image.png
Description
Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions

Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions because they could have seeded early Earth with significant amounts of water and pre-biotic, organic material, their record of abiotic, aqueous, and organic geochemistry is of interest as well.

CC materials previously resided on asteroidal parent bodies, relic planetesimals of Solar System formation which never accreted enough material to develop long-lived, large-scale geological processes. These bodies were large enough, however, to experience some degree of heating due to the decay of radiogenic isotopes, and the meteorite record suggests the existence of 100-150 parent bodies which experienced varying degrees of thermal and aqueous alteration for the first several 10 Myr of Solar System history.

The first chapter of this dissertation reviews literature addressing aqueous alteration as an essential participant in parent body geochemistry, organic synthesis, or both (though papers which address both are rare). The second chapter is a published organic analysis of the soluble organic material of Bells, an unclassified type 2 chondrite. Analytical approaches to assess terrestrial contamination of meteorite samples are also reviewed in the first chapter to allow introduction in chapter 3 of kinetic modeling which rules out certain cases of contamination and constrains the timing of thermal and aqueous alteration. This is the first known application of isoleucine epimerization for either of these purposes. Chapter 4 is a kinetic study of D-allo-isoleucine epimerization to establish its behavior in systems with large, relative abundances of alloisoleucine to isoleucine. Previous epimerization studies for paleontological or geological purposes began with L-isoleucine, the only protein amino acid of the four isoleucine stereoisomers.

Kinetic model calculations using isoleucine stereoisomer abundances from 7 CR chondrites constrain the total duration of the amino acids' residence in the aqueous phase. The comparatively short timescales produced by the presented modeling elicit hypotheses for protection or transport of the amino acids within the CR parent body.
ContributorsMonroe, Adam Alexander (Author) / Pizzarello, Sandra (Thesis advisor) / Williams, Peter (Thesis advisor) / Anbar, Ariel D (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2014
150288-Thumbnail Image.png
Description
In an effort to begin validating the large number of discovered candidate biomarkers, proteomics is beginning to shift from shotgun proteomic experiments towards targeted proteomic approaches that provide solutions to automation and economic concerns. Such approaches to validate biomarkers necessitate the mass spectrometric analysis of hundreds to thousands of human

In an effort to begin validating the large number of discovered candidate biomarkers, proteomics is beginning to shift from shotgun proteomic experiments towards targeted proteomic approaches that provide solutions to automation and economic concerns. Such approaches to validate biomarkers necessitate the mass spectrometric analysis of hundreds to thousands of human samples. As this takes place, a serendipitous opportunity has become evident. By the virtue that as one narrows the focus towards "single" protein targets (instead of entire proteomes) using pan-antibody-based enrichment techniques, a discovery science has emerged, so to speak. This is due to the largely unknown context in which "single" proteins exist in blood (i.e. polymorphisms, transcript variants, and posttranslational modifications) and hence, targeted proteomics has applications for established biomarkers. Furthermore, besides protein heterogeneity accounting for interferences with conventional immunometric platforms, it is becoming evident that this formerly hidden dimension of structural information also contains rich-pathobiological information. Consequently, targeted proteomics studies that aim to ascertain a protein's genuine presentation within disease- stratified populations and serve as a stepping-stone within a biomarker translational pipeline are of clinical interest. Roughly 128 million Americans are pre-diabetic, diabetic, and/or have kidney disease and public and private spending for treating these diseases is in the hundreds of billions of dollars. In an effort to create new solutions for the early detection and management of these conditions, described herein is the design, development, and translation of mass spectrometric immunoassays targeted towards diabetes and kidney disease. Population proteomics experiments were performed for the following clinically relevant proteins: insulin, C-peptide, RANTES, and parathyroid hormone. At least thirty-eight protein isoforms were detected. Besides the numerous disease correlations confronted within the disease-stratified cohorts, certain isoforms also appeared to be causally related to the underlying pathophysiology and/or have therapeutic implications. Technical advancements include multiplexed isoform quantification as well a "dual- extraction" methodology for eliminating non-specific proteins while simultaneously validating isoforms. Industrial efforts towards widespread clinical adoption are also described. Consequently, this work lays a foundation for the translation of mass spectrometric immunoassays into the clinical arena and simultaneously presents the most recent advancements concerning the mass spectrometric immunoassay approach.
ContributorsOran, Paul (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Ros, Alexandra (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
Description
Obtaining local electrochemical (EC) information is extremely important for understanding basic surface reactions, and for many applications. Scanning electrochemical microscopy (SECM) can obtain local EC information by scanning a microelectrode across the surface. Although powerful, SECM is slow, the scanning microelectrode may perturb reaction and the measured signal decreases with

Obtaining local electrochemical (EC) information is extremely important for understanding basic surface reactions, and for many applications. Scanning electrochemical microscopy (SECM) can obtain local EC information by scanning a microelectrode across the surface. Although powerful, SECM is slow, the scanning microelectrode may perturb reaction and the measured signal decreases with the size of microelectrode. This thesis demonstrates a new imaging technique based on a principle that is completely different from the conventional EC detection technologies. The technique, referred to as plasmonic-based electrochemical imaging (PECI), images local EC current (both faradaic and non-faradaic) without using a scanning microelectrode. Because PECI response is an optical signal originated from surface plasmon resonance (SPR), PECI is fast and non-invasive and its signal is proportional to incident light intensity, thus does not decrease with the area of interest. A complete theory is developed in this thesis work to describe the relationship between EC current and PECI signal. EC current imaging at various fixed potentials and local cyclic voltammetry methods are developed and demonstrated with real samples. Fast imaging rate (up to 100,000 frames per second) with 0.2×3µm spatial resolution and 0.3 pA detection limit have been achieved. Several PECI applications have been developed to demonstrate the unique strengths of the new imaging technology. For example, trace particles in fingerprint is detected by PECI, a capability that cannot be achieved with the conventional EC technologies. Another example is PECI imaging of EC reaction and interfacial impedance of graphene of different thicknesses. In addition, local square wave voltammetry capability is demonstrated and applied to study local catalytic current of platinum nanoparticle microarray. This thesis also describes a related but different research project that develops a new method to measure surface charge densities of SPR sensor chips, and micro- and nano-particles. A third project of this thesis is to develop a method to expand the conventional SPR detection and imaging technology by including a waveguide mode. This innovation creates a sensitive detection of bulk index of refraction, which overcomes the limitation that the conventional SPR can probe only changes near the sensor surface within ~200 nm.
ContributorsShan, Xiaonan (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Christen, Jennifer Blain (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2011
151190-Thumbnail Image.png
Description
Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been conducted. Oxygen is commonly used in secondary ion mass spectrometry

Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been conducted. Oxygen is commonly used in secondary ion mass spectrometry (SIMS) to increase ion yields, but also can complicate the interpretation of SIMS analyses. An 18O implant in silicon has been used to quantify the oxygen concentration at the surface of sputtered silicon in order to study the dependence on oxygen of several sputtering and depth profile phenomena. The ion yield dependence of trace elements in silicon on the surface oxygen concentration is a function of the ionization potential of the element. The ion yield is high and unaffected by oxygen for elements with low ionization potential and ranges over several orders of magnitude for elements with high ionization potential. Depth resolution in sputter profiles has been shown to be degraded by the presence of oxygen, the mechanism of this effect has been investigated using an 18O implant to quantify oxygen levels and it is shown that the process does not appear to be a consequence of surface oxide formation. Molecular ions are a source of mass interference in SIMS analysis, and multiply charged atomic ion signals might be interference-free due to the possible instability of multiply-charged molecular ions. Sputtered SiH2+, AlH2+, BeH2+, Mo22+ and Mg22+ ions have been observed and appear surprisingly stable. The formation mechanism of some of these species has been explored.
ContributorsSobers, Richard Carlisle, Jr (Author) / Williams, Peter (Thesis advisor) / Hayes, Mark (Committee member) / Petuskey, William (Committee member) / Arizona State University (Publisher)
Created2012
150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
154113-Thumbnail Image.png
Description
Electrophoretic exclusion is a counter-flow gradient focusing method that simultaneously separates and concentrates electrokinetic material at a channel entrance utilizing electric and fluid velocity fields. However, its effectiveness is heavily dependent on the non-uniform field gradients about the entrance. This work assesses the capability of electrophoretic exclusion to capture and

Electrophoretic exclusion is a counter-flow gradient focusing method that simultaneously separates and concentrates electrokinetic material at a channel entrance utilizing electric and fluid velocity fields. However, its effectiveness is heavily dependent on the non-uniform field gradients about the entrance. This work assesses the capability of electrophoretic exclusion to capture and enrich small molecules and examines the channel entrance region both quantitatively and qualitatively to better understand the separation dynamics for future design.

A flow injection technique is used to experimentally evaluate electrophoretic exclusion of small molecules. Methyl violet, a cationic dye, and visible spectroscopy are used to monitor flow and electrophoretic dynamics at the entrance region resulting in successful capture and simultaneous enrichment of methyl violet at the channel interface. Investigation of the entrance region is performed using both experiment data and finite element analysis modeling to assess regional flow, electric fields, diffusion, convection, and electrophoretic migration. Longitudinal fluid velocity and electric field gradient magnitudes near the channel entrance are quantified using Particle Tracking Velocimetry (PTV) and charged fluorescent microspheres. Lateral studies using rhodamine 123 concentration monitoring agree qualitatively with simulation results indicating decreased gradient uniformity for both electric and fluid velocity fields closer to the channel wall resulting in a localized concentration enhancement at lower applied voltages than previously observed or predicted. Resolution interrogation from both a theoretical assessment and simulation construct demonstrate resolution improvement with decreased channel width and placement of an electrode directly at the interface. Simulation resolution predictions are in general agreement with early experimental assessments, both suggesting species with electrophoretic mobilities as similar as 10-9 m2/(Vs) can be separated with the current design. These studies have helped evolve the understanding of the interface region and set the foundation for further interface developments.
ContributorsKeebaugh, Michael (Author) / Hayes, Mark (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2015
154177-Thumbnail Image.png
Description
Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies

Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies to separate mitochondrial sub-populations by size are thus needed to study the importance of this organelle in cellular functions. Additionally, challenges also exist in distinguishing the sub-populations of bio-species which differ in the surface charge while possessing similar size, such as Salmonella typhimurium (Salmonella). The surface charge of Salmonella wild-type is altered upon environmental stimulations, influencing the bacterial survival and virulence within the host tissue. Therefore, it is important to explore methods to identify the sub-populations of Salmonella.

This work exploits insulator-based dielectrophoresis (iDEP) for the manipulation of mitochondria and Salmonella. The iDEP migration and trapping of mitochondria were investigated under both DC and low-frequency AC conditions, establishing that mitochondria exhibit negative DEP. Also, the first realization of size-based iDEP sorting experiments of mitochondria were demonstrated. As for Salmonella, the preliminary study revealed positive DEP behavior. Distinct trapping potential thresholds were found for the sub-populations with different surface charges.

Further, DEP was integrated with a non-intuitive migration mechanism termed absolute negative mobility (ANM), inducing a deterministic trapping component which allows the directed transport of µm- and sub-µm sized (bio)particles in microfluidic devices with a nonlinear post array under the periodic action of electrokinetic and dielectrophoretic forces. Regimes were revealed both numerically and experimentally in which larger particles migrate against the average applied force, whereas smaller particles show normal response. Moreover, this deterministic ANM (dANM) was characterized with polystyrene beads demonstrating improved migration speed at least two orders of magnitude higher compared to previous ANM systems with similar sized colloids. In addition, dANM was induced for mitochondria with an AC-overlaid waveform representing the first demonstration of ANM migration with biological species. Thus, it is envisioned that the efficient size selectivity of this novel migration mechanism can be employed in nanotechnology, organelle sub-population studies or fractionating protein nanocrystals.
ContributorsLuo, Jinghui (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2015
Description
DNA and DNA nanoassemblies such as DNA origamis have large potential in biosensing, drug delivery, nanoelectronic circuits, and biological computing requiring suitable methods for migration and precise positioning. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of micro-and nanometer-sized objects. In order to exploit iDEP for naturally

DNA and DNA nanoassemblies such as DNA origamis have large potential in biosensing, drug delivery, nanoelectronic circuits, and biological computing requiring suitable methods for migration and precise positioning. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of micro-and nanometer-sized objects. In order to exploit iDEP for naturally formed DNA and DNA nanoassemblies, a detailed understanding of the underlying polarization and dielectrophoretic migration is essential. The shape and the counterion distribution are considered two essential factors in the polarization mechanism. Here, the dielectrophoretic behavior of 6-helix bundle (6HxB) and triangle DNA origamis with identical sequences but substantial topological differences was explored. The polarizability models were discussed for the two species according to their structural difference. The experimental observations reveal distinct iDEP trapping behavior in low frequency AC electric fields in addition to numerical simulations showing a considerable contribution of the electrophoretic transport of the DNA origami species in the DEP trapping regions. Furthermore, the polarizabilities of the two species were determined by measuring the migration times through a potential landscape exhibiting dielectrophoretic barriers. The resulting migration times correlate to the depth of the dielectrophoretic potential barrier and the escape characteristics of the DNA origamis according to an adapted Kramer’s rate model. The orientations of both species in the escape process were studied. Finally, to study the counterion distribution around the DNA molecules, both λ-DNA and 6HxB DNA were used in a phosphate buffer containing magnesium, revealing distinctive negative dielectrophoretic trapping behavior as opposed to positive trapping in a sodium/potassium phosphate buffer system.
ContributorsGan, Lin (Author) / Ros, Alexandra (Thesis advisor) / Buttry, Daniel (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2015