Matching Items (9)
Filtering by

Clear all filters

154113-Thumbnail Image.png
Description
Electrophoretic exclusion is a counter-flow gradient focusing method that simultaneously separates and concentrates electrokinetic material at a channel entrance utilizing electric and fluid velocity fields. However, its effectiveness is heavily dependent on the non-uniform field gradients about the entrance. This work assesses the capability of electrophoretic exclusion to capture and

Electrophoretic exclusion is a counter-flow gradient focusing method that simultaneously separates and concentrates electrokinetic material at a channel entrance utilizing electric and fluid velocity fields. However, its effectiveness is heavily dependent on the non-uniform field gradients about the entrance. This work assesses the capability of electrophoretic exclusion to capture and enrich small molecules and examines the channel entrance region both quantitatively and qualitatively to better understand the separation dynamics for future design.

A flow injection technique is used to experimentally evaluate electrophoretic exclusion of small molecules. Methyl violet, a cationic dye, and visible spectroscopy are used to monitor flow and electrophoretic dynamics at the entrance region resulting in successful capture and simultaneous enrichment of methyl violet at the channel interface. Investigation of the entrance region is performed using both experiment data and finite element analysis modeling to assess regional flow, electric fields, diffusion, convection, and electrophoretic migration. Longitudinal fluid velocity and electric field gradient magnitudes near the channel entrance are quantified using Particle Tracking Velocimetry (PTV) and charged fluorescent microspheres. Lateral studies using rhodamine 123 concentration monitoring agree qualitatively with simulation results indicating decreased gradient uniformity for both electric and fluid velocity fields closer to the channel wall resulting in a localized concentration enhancement at lower applied voltages than previously observed or predicted. Resolution interrogation from both a theoretical assessment and simulation construct demonstrate resolution improvement with decreased channel width and placement of an electrode directly at the interface. Simulation resolution predictions are in general agreement with early experimental assessments, both suggesting species with electrophoretic mobilities as similar as 10-9 m2/(Vs) can be separated with the current design. These studies have helped evolve the understanding of the interface region and set the foundation for further interface developments.
ContributorsKeebaugh, Michael (Author) / Hayes, Mark (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2015
Description
DNA and DNA nanoassemblies such as DNA origamis have large potential in biosensing, drug delivery, nanoelectronic circuits, and biological computing requiring suitable methods for migration and precise positioning. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of micro-and nanometer-sized objects. In order to exploit iDEP for naturally

DNA and DNA nanoassemblies such as DNA origamis have large potential in biosensing, drug delivery, nanoelectronic circuits, and biological computing requiring suitable methods for migration and precise positioning. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of micro-and nanometer-sized objects. In order to exploit iDEP for naturally formed DNA and DNA nanoassemblies, a detailed understanding of the underlying polarization and dielectrophoretic migration is essential. The shape and the counterion distribution are considered two essential factors in the polarization mechanism. Here, the dielectrophoretic behavior of 6-helix bundle (6HxB) and triangle DNA origamis with identical sequences but substantial topological differences was explored. The polarizability models were discussed for the two species according to their structural difference. The experimental observations reveal distinct iDEP trapping behavior in low frequency AC electric fields in addition to numerical simulations showing a considerable contribution of the electrophoretic transport of the DNA origami species in the DEP trapping regions. Furthermore, the polarizabilities of the two species were determined by measuring the migration times through a potential landscape exhibiting dielectrophoretic barriers. The resulting migration times correlate to the depth of the dielectrophoretic potential barrier and the escape characteristics of the DNA origamis according to an adapted Kramer’s rate model. The orientations of both species in the escape process were studied. Finally, to study the counterion distribution around the DNA molecules, both λ-DNA and 6HxB DNA were used in a phosphate buffer containing magnesium, revealing distinctive negative dielectrophoretic trapping behavior as opposed to positive trapping in a sodium/potassium phosphate buffer system.
ContributorsGan, Lin (Author) / Ros, Alexandra (Thesis advisor) / Buttry, Daniel (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2015
157398-Thumbnail Image.png
Description
Disease prevention and personalized treatment will be impacted by the continued integration of protein biomarkers into medical practice. While there are already numerous biomarkers used clinically, the detection of protein biomarkers among complex matrices remains a challenging problem. One very important strategy for improvements in clinical application of biomarkers is

Disease prevention and personalized treatment will be impacted by the continued integration of protein biomarkers into medical practice. While there are already numerous biomarkers used clinically, the detection of protein biomarkers among complex matrices remains a challenging problem. One very important strategy for improvements in clinical application of biomarkers is separation/preconcentration, impacting the reliability, efficiency and early detection. Electrophoretic exclusion can be used to separate, purify, and concentrate biomarkers. This counterflow gradient technique exploits hydrodynamic flow and electrophoretic forces to exclude, enrich, and separate analytes. The development of this technique has evolved onto an array-based microfluidic platform which offers a greater range of geometries/configurations for optimization and expanded capabilities and applications. Toward this end of expanded capabilities, fundamental studies of subtle changes to the entrance flow and electric field configurations are investigated. Three closely related microfluidic interfaces are modeled, fabricated and tested. A charged fluorescent dye is used as a sensitive and accurate probe to test the concentration variation at these interfaces. Models and experiments focus on visualizing the concentration profile in areas of high temporal dynamics, and show strong qualitative agreement, which suggests the theoretical assessment capabilities can be used to faithfully design novel and more efficient interfaces. Microfluidic electrophoretic separation technique can be combined with electron microscopy as a protein concentration/purification step aiding in sample preparation. The integrated system with grids embedded into the microdevice reduces the amount of time required for sample preparation to less than five minutes. Spatially separated and preconcentrated proteins are transferred directly from an upstream reservoir onto grids. Dilute concentration as low as 0.005 mg/mL can be manipulated to achieve meaningful results. Selective concentration of one protein from a mixture of two proteins is also demonstrated. Electrophoretic exclusion is also used for biomarker applications. Experiments using a single biomarker are conducted to assess the ability of the microdevice for enrichment in central reservoirs. A mixture of two protein biomarkers are performed to evaluate the proficiency of the device for separations capability. Moreover, a battery is able to power the microdevice, which facilitates the future application as a portable device.
ContributorsZhu, Fanyi (Author) / Hayes, Mark (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2019
154543-Thumbnail Image.png
Description
Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited to currently active systems and sensitive to atmospheric contamination. A different methodological approach requires appropriate analytical parameters for nitrogen analysis

Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited to currently active systems and sensitive to atmospheric contamination. A different methodological approach requires appropriate analytical parameters for nitrogen analysis in silicate glasses by secondary ion mass spectrometry (SIMS), which have not yet been established. To this end, we analyze various ion implanted basaltic and rhyolitic glasses by SIMS. We demonstrate that water content significantly affects the ion yields of 14N+ and 14N16O−, as well as the background intensity of 14N+ and 12C+. Application of implant-derived calibrations to natural samples provide the first reported concentrations of nitrogen in melt inclusions. These measurements are from samples from the Bishop Tuff in California, the Huckleberry Ridge Tuff of the Yellowstone Volcanic Center, and material from the Okaia and Oruanui eruptions in the Taupo Volcanic Center. In all studied material, we find maximum nitrogen contents of less than 45 ppm and that nitrogen concentration varies positively with CO2 concentration, which is interpreted to reflect partial degassing trend. Using the maximum measured nitrogen contents for each eruption, we find that the Bishop released >3.6 x 1013 g of nitrogen, the Huckleberry Ridge released >1.3 x 1014 g, the Okaia released >1.1 x 1011 g of nitrogen, the Oruanui released >4.7 x 1013 g of nitrogen. Simple calculations suggest that with concentrations such as these, rhyolitic eruptions may ephemerally increase the nitrogen flux to the atmosphere, but are insignificant compared to the 4 x 1021 g of nitrogen stored in the atmosphere.
ContributorsRegier, Margo Elaine (Author) / Hervig, Richard L (Thesis advisor) / Roggensack, Kurt (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2016
155525-Thumbnail Image.png
Description
Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in

Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in DNA was tuned to either a hopping- or tunneling-dominated regimes. In the hopping regime, the thermoelectric effect is small and insensitive to the molecular length. Meanwhile, in the tunneling regime, the thermoelectric effect is large and sensitive to the length. These findings indicate that by varying its sequence and length, the thermoelectric effect in DNA can be controlled. The experimental results are then described in terms of hopping and tunneling charge transport models.

Then, I showed that the electron transfer reaction of a single ferrocene molecule can be controlled with a mechanical force. I monitor the redox state of the molecule from its characteristic conductance, detect the switching events of the molecule from reduced to oxidized states with the force, and determine a negative shift of ~34 mV in the redox potential under force. The theoretical modeling is in good agreement with the observations, and reveals the role of the coupling between the electronic states and structure of the molecule.

Finally, conclusions and perspectives were discussed to point out the implications of the above works and future studies that can be performed based on the findings.
ContributorsLi, Yueqi, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Buttry, Daniel (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2017
151314-Thumbnail Image.png
Description
Complex samples, such as those from biological sources, contain valuable information indicative of the state of human health. These samples, though incredibly valuable, are difficult to analyze. Separation science is often used as the first step when studying these samples. Electrophoretic exclusion is a novel separations technique that differentiates species

Complex samples, such as those from biological sources, contain valuable information indicative of the state of human health. These samples, though incredibly valuable, are difficult to analyze. Separation science is often used as the first step when studying these samples. Electrophoretic exclusion is a novel separations technique that differentiates species in bulk solution. Due to its ability to isolate species in bulk solution, it is uniquely suited to array-based separations for complex sample analysis. This work provides proof of principle experimental results and resolving capabilities of the novel technique. Electrophoretic exclusion is demonstrated at a single interface on both benchtop and microscale device designs. The benchtop instrument recorded absorbance measurements in a 365 μL reservoir near a channel entrance. Results demonstrated the successful exclusion of a positively-charged dye, methyl violet, with various durations of applied potential (30 - 60 s). This was the first example of measuring absorbance at the exclusion location. A planar, hybrid glass/PDMS microscale device was also constructed. One set of experiments employed electrophoretic exclusion to isolate small dye molecules (rhodamine 123) in a 250 nL reservoir, while another set isolated particles (modified polystyrene microspheres). Separation of rhodamine 123 from carboxylate-modified polystyrene spheres was also shown. These microscale results demonstrated the first example of the direct observation of exclusion behavior. Furthermore, these results showed that electrophoretic exclusion can be applicable to a wide range of analytes. The theoretical resolving capabilities of electrophoretic exclusion were also developed. Theory indicates that species with electrophoretic mobilities as similar as 10-9 cm2/Vs can be separated using electrophoretic exclusion. These results are comparable to those of capillary electrophoresis, but on a very different format. This format, capable of isolating species in bulk solution, coupled with the resolving capabilities, makes the technique ideal for use in a separations-based array.
ContributorsKenyon, Stacy Marie (Author) / Hayes, Mark A. (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
168702-Thumbnail Image.png
Description
Understanding cellular processes can provide insight into disease pathogenesis and reveal critical information for prevention, diagnosis, and treatment. As key executors and signaling regulators, proteins carry relevant information not available from genomics and transcriptomics. Cell-to-cell differences significantly affect disease incidence and drug responses, generating a need for protein analysis at

Understanding cellular processes can provide insight into disease pathogenesis and reveal critical information for prevention, diagnosis, and treatment. As key executors and signaling regulators, proteins carry relevant information not available from genomics and transcriptomics. Cell-to-cell differences significantly affect disease incidence and drug responses, generating a need for protein analysis at the single-cell level. However, quantitative protein analysis at the single-cell level remains challenging due to the low protein amount in a single cell and the proteome complexity. It requires sensitive detection techniques and appropriate sample preparation and delivery to the detection area. Here, a microfluidic platform in tandem with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) has been developed for targeted intracellular protein analysis. The elastomeric multi-layer microfluidic platform, termed MIMAS, was designed as a series of 8.75 nL wells separated by pneumatic valves. The MIMAS platform allows cell loading, sample processing on-chip, and further in situ mass spectrometry analysis. The sample processing includes cell lysis, immunocapture, tryptic digestion and MALDI matrix solution loading for co-crystallization. This work demonstrates that the MIMAS approach is suitable for protein quantification by assessing the apoptotic protein Bcl-2 from MCF-7 breast cancer cells using an isotope-labeled peptide. The limit of detection was determined as 11.22 nM, equivalent to 5.91 x 10^7 protein molecules per well. Moreover, the MIMAS platform design was improved, allowing the successful quantification of Bcl-2 protein in small cell ensembles down to ~10 cells in 4 nL wells. Furthermore, the MIMAS platform was integrated with laser capture microdissection (LCM) for protein analysis from post-mortem human tissues. Intracellular amyloid-β peptide (Aβ), a hallmark of Alzheimer’s Disease, was assessed from human brain tissue using the LCM-MIMAS. The successful detection of Aβ from small cell ensembles (20 sliced pyramidal cells) demonstrated the LCM-MIMAS capability of assessing intracellular proteins from specific tissue cell subpopulations. The MIMAS approach is a promising tool for intracellular protein analysis from small cell ensembles, with the potential for single-cell analysis. It allows for protein analysis towards the understanding of biological phenomena for clinical and biological research.
ContributorsCruz Villarreal, Jorvani (Author) / Ros, Alexandra (Thesis advisor) / Borges, Chad R (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
161897-Thumbnail Image.png
Description
A novel technique for measuring heavy trace elements in geologic materials with secondary ion mass spectrometry (SIMS) is presented. This technique combines moderate levels of mass resolving power (MRP) with energy filtering in order to remove molecular ion interferences while maintaining enough sensitivity to measure trace elements. The technique was

A novel technique for measuring heavy trace elements in geologic materials with secondary ion mass spectrometry (SIMS) is presented. This technique combines moderate levels of mass resolving power (MRP) with energy filtering in order to remove molecular ion interferences while maintaining enough sensitivity to measure trace elements. The technique was evaluated by measuring a set of heavy chalcophilic elements in two sets of doped glasses similar in composition to rhyolites and basalts, respectively. The normalized count rates of Cu, As, Se, Br, and Te were plotted against concentrations to test that the signal increased linearly with concentration. The signal from any residual molecular ion interferences (e.g. ²⁹Si³⁰Si¹⁶O on ⁷⁵As) represented apparent concentrations ≤ 1 μg/g for most of the chalcophiles in rhyolitic matrices and between 1 and 10 μg/g in basaltic compositions. This technique was then applied to two suites of melt inclusions from the Bandelier Tuff: Ti-rich, primitive and Ti-poor, evolved rhyolitic compositions. The results showed that Ti-rich inclusions contained ~30 μg/g Cu and ~3 μg/g As while the Ti-poor inclusions contained near background Cu and ~6 μg/g As. Additionally, two of the Ti-rich inclusions contained > 5 μg/g of Sb and Te, well above background. Other elements were at or near background. This suggests certain chalcophilic elements may be helpful in unraveling processes relating to diversity of magma sources in large eruptions. Additionally, an unrelated experiment is presented demonstrating changes in the matrix effect on SIMS counts when normalizing against ³⁰Si⁺ versus ²⁸Si²⁺. If one uses doubly charged silicon as a reference, (common when using large-geometry SIMS instruments to study the light elements Li - C) it is important that the standards closely match the major element chemistry of the unknown.
ContributorsCarlson, Eric Norton (Author) / Hervig, Richard L (Thesis advisor) / Roggensack, Kurt (Committee member) / Burt, Donald M (Committee member) / Arizona State University (Publisher)
Created2021
171881-Thumbnail Image.png
Description
Microfluidics has enabled many biological and biochemical applications such as high-throughput drug testing or point-of-care diagnostics. Dielectrophoresis (DEP) has recently achieved prominence as a powerful microfluidic technique for nanoparticle separation. Novel electric field-assisted insulator-based dielectrophoresis (iDEP) microfluidic devices have been employed to fractionate rod-shaped nanoparticles like Single-walled carbon nanotubes (SWNTs)

Microfluidics has enabled many biological and biochemical applications such as high-throughput drug testing or point-of-care diagnostics. Dielectrophoresis (DEP) has recently achieved prominence as a powerful microfluidic technique for nanoparticle separation. Novel electric field-assisted insulator-based dielectrophoresis (iDEP) microfluidic devices have been employed to fractionate rod-shaped nanoparticles like Single-walled carbon nanotubes (SWNTs) and manipulate biomolecules like Deoxyribonucleic acid (DNA) and proteins. This dissertation involves the development of traditional as well as 3D-printed iDEP devices for the manipulation of nm-to-µm scale analytes. First, novel iDEP microfluidic constriction-based sorting devices were developed to introduce inhomogeneous electric field gradients to fractionate SWNTs by length. SWNTs possess length-specific optical and electrical properties, expanding their potential applications for future nanoscale devices. Standard synthesis procedures yield SWNTs in large-length polydispersity and chirality. Thus, an iDEP-based fractionation tool for desired lengths of SWNTs may be beneficial. This dissertation presents the first study of DEP characterization and fractionation of SWNTs using an iDEP microfluidic device. Using this iDEP constriction sorter device, two different length distributions of SWNTs were sorted with a sorting efficiency of >90%. This study provides the fundamentals of fractionating SWNTs by length, which can help separate and purify SWNTs for future nanoscale-based applications. Manipulation of nm-scale analytes requires achieving high electric field gradients in an iDEP microfluidic device, posing one of the significant challenges for DEP applications. Introducing nm-sized constrictions in an iDEP device can help generate a higher electric field gradient. However, this requires cumbersome and expensive fabrication methods. In recent years, 3D printing has drawn tremendous attention in microfluidics, alleviating complications associated with complex fabrication methods. A high-resolution 3D-printed iDEP device was developed and fabricated for iDEP-based manipulation of analytes. A completely 3D-printed device with 2 µm post-gaps was realized, and fluorescent polystyrene (PS) beads, λ-DNA, and phycocyanin protein trapping were demonstrated. Furthermore, a nm-resolution 3D-printed iDEP device was successfully printed. In the future, these high-resolution 3D-printed devices may lead to exploring DEP characteristics of nanoscale analytes like single protein molecules and viruses. The electric field-assisted unique fractionation phenomena in microfluidic platforms will become a critical solution for nanoparticle separation and manipulating biomolecules.
ContributorsRabbani, Mohammad Towshif (Author) / Ros, Alexandra (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2022