Matching Items (6)
Filtering by

Clear all filters

152801-Thumbnail Image.png
Description
Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults

Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults participated in the study that measured intelligibility (percent words correct) of dysarthric speech in auditory versus audiovisual conditions. Participants were then separated into two groups: older adults (age range 47 to 68) and young adults (age range 19 to 36) to examine the influence of age. Findings revealed that all participants, regardless of age, improved their ability to recognize dysarthric speech when visual speech was added to the auditory signal. The magnitude of this benefit, however, was greater for older adults when compared with younger adults. These results inform our understanding of how visual speech information influences understanding of dysarthric speech.
ContributorsFall, Elizabeth (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Gray, Shelley (Committee member) / Arizona State University (Publisher)
Created2014
150607-Thumbnail Image.png
Description
Often termed the "gold standard" in the differential diagnosis of dysarthria, the etiology-based Mayo Clinic classification approach has been used nearly exclusively by clinicians since the early 1970s. However, the current descriptive method results in a distinct overlap of perceptual features across various etiologies, thus limiting the clinical utility of

Often termed the "gold standard" in the differential diagnosis of dysarthria, the etiology-based Mayo Clinic classification approach has been used nearly exclusively by clinicians since the early 1970s. However, the current descriptive method results in a distinct overlap of perceptual features across various etiologies, thus limiting the clinical utility of such a system for differential diagnosis. Acoustic analysis may provide a more objective measure for improvement in overall reliability (Guerra & Lovely, 2003) of classification. The following paper investigates the potential use of a taxonomical approach to dysarthria. The purpose of this study was to identify a set of acoustic correlates of perceptual dimensions used to group similarly sounding speakers with dysarthria, irrespective of disease etiology. The present study utilized a free classification auditory perceptual task in order to identify a set of salient speech characteristics displayed by speakers with varying dysarthria types and perceived by listeners, which was then analyzed using multidimensional scaling (MDS), correlation analysis, and cluster analysis. In addition, discriminant function analysis (DFA) was conducted to establish the feasibility of using the dimensions underlying perceptual similarity in dysarthria to classify speakers into both listener-derived clusters and etiology-based categories. The following hypothesis was identified: Because of the presumed predictive link between the acoustic correlates and listener-derived clusters, the DFA classification results should resemble the perceptual clusters more closely than the etiology-based (Mayo System) classifications. Results of the present investigation's MDS revealed three dimensions, which were significantly correlated with 1) metrics capturing rate and rhythm, 2) intelligibility, and 3) all of the long-term average spectrum metrics in the 8000 Hz band, which has been linked to degree of phonemic distinctiveness (Utianski et al., February 2012). A qualitative examination of listener notes supported the MDS and correlation results, with listeners overwhelmingly making reference to speaking rate/rhythm, intelligibility, and articulatory precision while participating in the free classification task. Additionally, acoustic correlates revealed by the MDS and subjected to DFA indeed predicted listener group classification. These results beget acoustic measurement as representative of listener perception, and represent the first phase in supporting the use of a perceptually relevant taxonomy of dysarthria.
ContributorsNorton, Rebecca (Author) / Liss, Julie (Thesis advisor) / Azuma, Tamiko (Committee member) / Ingram, David (Committee member) / Arizona State University (Publisher)
Created2012
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12