Matching Items (4)
Filtering by

Clear all filters

134565-Thumbnail Image.png
Description
A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs

A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs the dynamics of internal waves in stably stratified shear flows. The waves are forced by a flow over a bell shaped mountain placed at the lower boundary of the domain. A perfectly radiating condition based on the group velocity of mountain waves is imposed at the top to avoid artificial wave reflection. A validation for the numerical method through comparisons with the corresponding analytical solutions will be provided. Then, the method is applied to more realistic profiles of the stability to study the impact of these profiles on wave propagation through the tropopause.
Created2017-05
154673-Thumbnail Image.png
Description
This thesis examines the synoptic characteristics associated with ozone exceedance events in Arizona during the time period of 2011 to 2013. Finding explanations and sources to the ground level ozone in this state is crucial to maintaining the state’s adherence to federal air quality regulations. This analysis utilizes ambient ozone

This thesis examines the synoptic characteristics associated with ozone exceedance events in Arizona during the time period of 2011 to 2013. Finding explanations and sources to the ground level ozone in this state is crucial to maintaining the state’s adherence to federal air quality regulations. This analysis utilizes ambient ozone concentration data, surface meteorological conditions, upper air analyses, and HYSPLIT modeling to analyze the synoptic characteristics of ozone events. Based on these data and analyses, five categories were determined to be associated with these events. The five categories all exhibit distinct upper air patterns and surface conditions conducive to the formation of ozone, as well as distinct potential transport pathways of ozone from different nearby regions. These findings indicate that ozone events in Arizona can be linked to synoptic-scale patterns and potential regional transport of ozone. These results can be useful in the forecasting of high ozone pollution and influential on the legislative reduction of ozone pollution.
ContributorsWood, Jessica (Author) / Cerveny, Randall (Thesis advisor) / Georgescu, Matei (Committee member) / Brazel, Anthony (Committee member) / Arizona State University (Publisher)
Created2016
Description
The planetary boundary layer (PBL) is the lowest part of the troposphere and is directly influenced by surface forcing. Anthropogenic modification from natural to urban environments characterized by increased impervious surfaces, anthropogenic heat emission, and a three-dimensional building morphology, affects land-atmosphere interactions in the urban boundary layer (UBL). Ample research

The planetary boundary layer (PBL) is the lowest part of the troposphere and is directly influenced by surface forcing. Anthropogenic modification from natural to urban environments characterized by increased impervious surfaces, anthropogenic heat emission, and a three-dimensional building morphology, affects land-atmosphere interactions in the urban boundary layer (UBL). Ample research has demonstrated the effect of landscape modifications on development and modulation of the near-surface urban heat island (UHI). However, despite potential implications for air quality, precipitation patterns and aviation operations, considerably less attention has been given to impacts on regional scale wind flow. This dissertation, composed of three peer reviewed manuscripts, fills a fundamental gap in urban climate research, by investigating individual and combined impacts of urbanization, heat adaptation strategies and projected climate change on UBL dynamics. Paper 1 uses medium-resolution Weather Research and Forecast (WRF) climate simulations to assess contemporary and future impacts across the Conterminous US (CONUS). Results indicate that projected urbanization and climate change are expected to increase summer daytime UBL height in the eastern CONUS. Heat adaptation strategies are expected to reduce summer daytime UBL depth by several hundred meters, increase both daytime and nighttime static stability and induce stronger subsidence, especially in the southwestern US. Paper 2 investigates urban modifications to contemporary wind circulation in the complex terrain of the Phoenix Metropolitan Area (PMA) using high-resolution WRF simulations. The built environment of PMA decreases wind flow in the evening and nighttime inertial sublayer and produces a UHI-induced circulation of limited vertical extent that modulates the background flow. During daytime, greater urban sensible heat flux dampens the urban roughness-induced drag effect by promoting a deeper, more mixed UBL. Paper 3 extends the investigation to future scenarios showing that, overall, climate change is expected to reduce wind speed across the PMA. Projected increased soil moisture is expected to intensify katabatic winds and weaken anabatic winds along steeper slopes. Urban development is expected to obstruct nighttime wind flow across areas of urban expansion and increase turbulence in the westernmost UBL. This dissertation advances the understanding of regional-scale UBL dynamics and highlights challenges and opportunities for future research.
ContributorsBrandi, Aldo (Author) / Georgescu, Matei (Thesis advisor) / Broadbent, Ashley (Committee member) / Moustaoui, Mohamed (Committee member) / Sailor, David (Committee member) / Arizona State University (Publisher)
Created2023
158355-Thumbnail Image.png
Description

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT)

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT) and WBGT derived from regional weather station data. Moreover, only one study has quantified the relationship between regionally modeled and on-site measured WBGT over different athletic surfaces (natural grass, rubber track, and concrete tennis court). The current research expands on previous studies to examine how different athletic surfaces influence the thermal environment in the Phoenix Metropolitan Area using a combination of fieldwork, modeling, and statistical analysis. Meteorological data were collected from 0700–1900hr across 6 days in June and 5 days in August 2019 in Tempe, Arizona at various Sun Devil Athletics facilities. This research also explored the influence of surface temperatures on WBGT and the changes projected under a future warmer climate. Results indicate that based on American College of Sports Medicine guidelines practice would not be cancelled in June (WBGT≥32.3°C); however, in August, ~33% of practice time was lost across multiple surfaces. The second-tier recommendations (WBGT≥30.1°C) to limit intense exercise were reached an average of 7 hours each day for all surfaces in August. Further, WBGT was calculated using data from four Arizona Meteorological Network (AZMET) weather stations to provide regional WBGT values for comparison. The on-site (field/court) WBGT values were consistently higher than regional values and significantly different (p<0.05). Thus, using regionally-modeled WBGT data to guide activity or clothing modification for heat safety may lead to misclassification and unsafe conditions. Surface temperature measurements indicate a maximum temperature (170°F) occurring around solar noon, yet WBGT reached its highest level mid-afternoon and on the artificial turf surface (2–5PM). Climate projections show that WBGT values are expected to rise, further restricting the amount of practice and games than can take place outdoors during the afternoon. The findings from this study can be used to inform athletic trainers and coaches about the thermal environment through WBGT values on-field.

ContributorsGuyer, Haven Elizabeth (Author) / Vanos, Jennifer K. (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2020