Matching Items (4)

Diagnostic Research Proposal for Chronic Traumatic Encephalopathy

Description

Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative brain disease that results from repetitive brain trauma causing brain structure, personality, behavioral, and cognitive changes. CTE is currently undiagnosable and untreatable in living patients. This thesis investigates research surrounding CTE and presents

Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative brain disease that results from repetitive brain trauma causing brain structure, personality, behavioral, and cognitive changes. CTE is currently undiagnosable and untreatable in living patients. This thesis investigates research surrounding CTE and presents a comparative discussion of the advantages and disadvantages of current diagnostic methods used for other neurodegenerative diseases that may be useful for the diagnosis of CTE.

Contributors

Agent

Created

Date Created
2019-05

151493-Thumbnail Image.png

Synthesis of benzoquinone antioxidants and a bleomycin disaccharide library

Description

Healthy mitochondria are essential for cell survival. Described herein is the synthesis of a family of novel aminoquinone antioxidants designed to alleviate oxidative stress and prevent the impairment of cellular function. In addition, a library of bleomycin disaccharide analogues has

Healthy mitochondria are essential for cell survival. Described herein is the synthesis of a family of novel aminoquinone antioxidants designed to alleviate oxidative stress and prevent the impairment of cellular function. In addition, a library of bleomycin disaccharide analogues has also been synthesized to better probe the tumor targeting properties of bleomycin. The first study involves the synthesis of a benzoquinone natural product and analogues that closely resemble the redox core of the natural product geldanamycin. The synthesized 5-amino-3-tridecyl-1,4-benzoquinone antioxidants were tested for their ability to protect Friedreich's ataxia (FRDA) lymphocytes from induced oxidative stress. Some of the analogues synthesized conferred cytoprotection in a dose-dependent manner in FRDA lymphocytes at micromolar concentrations. The biological assays suggest that the modification of the 2-hydroxyl and N-(3-carboxypropyl) groups in the natural product can improve its antioxidant activity and significantly enhance its ability to protect mitochondrial function under conditions of oxidative stress. The second project focused on the synthesis of a library of bleomycin disaccharide-dye conjugates and monitored their cellular uptake by fluorescence microscopy. The studies reveal that the position of the carbamoyl group plays an important role in modulating the cellular uptake of the disaccharide. It also led to the discovery of novel disaccharides with improved tumor selectivity.

Contributors

Agent

Created

Date Created
2013

148342-Thumbnail Image.png

Alzheimer's Disease in Latinos

Description

Alzheimer’s disease is a disease that can affect cognition, perception and behavior and is currently untreatable. It was discovered in the early 20th century and while significant scientific advancements have occurred, there is ambiguity that remains to be researched and

Alzheimer’s disease is a disease that can affect cognition, perception and behavior and is currently untreatable. It was discovered in the early 20th century and while significant scientific advancements have occurred, there is ambiguity that remains to be researched and understood. Latinos are the largest ethnic minority in the United States and while data still needs to be uncovered, possible risk factors for developing Alzheimer’s include heart issues, poverty and obesity, age and education level, to name a few. Poverty is linked to obesity, diabetes and a low education level, which in turn have been found to have an impact on Alzheimer’s and all factors impact cardiovascular and vascular health. Due to the collectivistic culture that is deeply rooted in Latinos, there is a strong sense of family that is upheld when caring for relatives who are afflicted and may be hesitant to receive the care that is needed. Other barriers include financial stability, linguistic and cultural barriers, underutilizing resources and health literacy. There are still research gaps that are yet to be filled like brain health and longitudinal studies for Latinos, but current treatments like diet and culturally competent professionals can help with the prognosis. Alzheimer’s is a complex disease, but with the numerous efforts made thus far, such as creating the LatinosAgainstAlzheimer’s Network, it will soon be able to be understood and hopefully eradicated.

Contributors

Agent

Created

Date Created
2021-05

154728-Thumbnail Image.png

A robust vitronectin-derived peptide substrate for the scalable long-term expansion and neuronal differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs)

Description

Several debilitating neurological disorders, such as Alzheimer's disease, stroke, and spinal cord injury, are characterized by the damage or loss of neuronal cell types in the central nervous system (CNS). Human neural progenitor cells (hNPCs) derived from human pluripotent stem

Several debilitating neurological disorders, such as Alzheimer's disease, stroke, and spinal cord injury, are characterized by the damage or loss of neuronal cell types in the central nervous system (CNS). Human neural progenitor cells (hNPCs) derived from human pluripotent stem cells (hPSCs) can proliferate extensively and differentiate into the various neuronal subtypes and supporting cells that comprise the CNS. As such, hNPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine applications. However, the use hNPCs for the study and treatment of neurological diseases requires the development of defined, robust, and scalable methods for their expansion and neuronal differentiation. To that end a rational design process was used to develop a vitronectin-derived peptide (VDP)-based substrate to support the growth and neuronal differentiation of hNPCs in conventional two-dimensional (2-D) culture and large-scale microcarrier (MC)-based suspension culture. Compared to hNPCs cultured on ECMP-based substrates, hNPCs grown on VDP-coated surfaces displayed similar morphologies, growth rates, and high expression levels of hNPC multipotency markers. Furthermore, VDP surfaces supported the directed differentiation of hNPCs to neurons at similar levels to cells differentiated on ECMP substrates. Here it has been demonstrated that VDP is a robust growth and differentiation matrix, as demonstrated by its ability to support the expansions and neuronal differentiation of hNPCs derived from three hESC (H9, HUES9, and HSF4) and one hiPSC (RiPSC) cell lines. Finally, it has been shown that VDP allows for the expansion or neuronal differentiation of hNPCs to quantities (>1010) necessary for drug screening or regenerative medicine purposes. In the future, the use of VDP as a defined culture substrate will significantly advance the clinical application of hNPCs and their derivatives as it will enable the large-scale expansion and neuronal differentiation of hNPCs in quantities necessary for disease modeling, drug screening, and regenerative medicine applications.

Contributors

Agent

Created

Date Created
2016