Matching Items (11)
Filtering by

Clear all filters

151601-Thumbnail Image.png
Description
The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current

The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current automotive infrastructure. Additionally, butanol offers the same environmentally friendly effects as ethanol, but possess a 23% higher energy density. Clostridium acetobutylicum is an anaerobic bacterium that can ferment renewable biomass-derived sugars into butanol. However, this fermentation becomes limited by relatively low butanol concentrations (1.3% w/v), making this process uneconomical. To economically produce butanol, the in-situ product removal (ISPR) strategy is employed to the butanol fermentation. ISPR entails the removal of butanol as it is produced, effectively avoiding the toxicity limit and allowing for increased overall butanol production. This thesis explores the application of ISPR through integration of expanded-bed adsorption (EBA) with the C. acetobutylicum butanol fermentations. The goal is to enhance volumetric productivity and to develop a semi-continuous biofuel production process. The hydrophobic polymer resin adsorbent Dowex Optipore L-493 was characterized in cell-free studies to determine the impact of adsorbent mass and circulation rate on butanol loading capacity and removal rate. Additionally, the EBA column was optimized to use a superficial velocity of 9.5 cm/min and a resin fraction of 50 g/L. When EBA was applied to a fed-batch butanol fermentation performed under optimal operating conditions, a total of 25.5 g butanol was produced in 120 h, corresponding to an average yield on glucose of 18.6%. At this level, integration of EBA for in situ butanol recovered enabled the production of 33% more butanol than the control fermentation. These results are very promising for the production of butanol as a biofuel. Future work will entail the optimization of the fed-batch process for higher glucose utilization and development of a reliable butanol recovery system from the resin.
ContributorsWiehn, Michael (Author) / Nielsen, David (Thesis advisor) / Lin, Jerry (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2013
150327-Thumbnail Image.png
Description
This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in

This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in both packed bed (PB) and inverse fluidized bed (IFB) modes was also investigated. The sorption mechanisms of VOCs in the vapor, pure liquid, and aqueous solution phases, free oil, emulsified oil, and oil from real wastewater on Nanogel were systematically studied via batch kinetics and equilibrium experiments. The VOC results show that the adsorption of vapor is very slow due to the extremely low thermal conductivity of Nanogel. The faster adsorption rates in the liquid and solution phases are controlled by the mass transport, either by capillary flow or by vapor diffusion/adsorption. The oil results show that Nanogel has a very high capacity for adsorption of pure oils. However, the rate for adsorption of oil from an oil-water emulsion on the Nanogel is 5-10 times slower than that for adsorption of pure oils or organics from their aqueous solutions. For an oil-water emulsion, the oil adsorption capacity decreases with an increasing proportion of the surfactant added. An even lower sorption capacity and a slower sorption rate were observed for a real oily wastewater sample due to the high stability and very small droplet size of the wastewater. The performance of Nanogel granules for removing emulsified oil, oil from real oily wastewater, and toluene at low concentrations in both PB and IFB modes was systematically investigated. The hydrodynamics characteristics of the Nanogel granules in an IFB were studied by measuring the pressure drop and bed expansion with superficial water velocity. The density of the Nanogel granules was calculated from the plateau pressure drop of the IFB. The oil/toluene removal efficiency and the capacity of the Nanogel granules in the PB or IFB were also measured experimentally and predicted by two models based on equilibrium and kinetic batch measurements of the Nanogel granules.
ContributorsWang, Ding (Author) / Lin, Jerry Y.S. (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Westerhoff, Paul (Committee member) / Nielsen, David (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2011
154071-Thumbnail Image.png
Description
Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.
ContributorsChen, Haobo (Author) / Dai, Lenore L (Committee member) / Chen, Kangping (Committee member) / Forzani, Erica (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2015
133605-Thumbnail Image.png
Description
Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s group (School of Molecular Sciences, Arizona State University) synthesized the nanostructured faujasite (NaX). The zeolite was characterized using Scanning Electron Microscopy

Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s group (School of Molecular Sciences, Arizona State University) synthesized the nanostructured faujasite (NaX). The zeolite was characterized using Scanning Electron Microscopy (SEM) and the physisorption properties were determined using ASAP 2020. ASAP 2020 tests of the nano-zeolite pellets at 77K in a liquid N2 bath determined the BET surface area of 547.1 m2/mol, T-plot micropore volume of 0.2257 cm3/g, and an adsorption average pore width of 5.9 Å. The adsorption isotherm (equilibrium) of CH4, N2, and CO2 were measured at 25ºC. Adsorption isotherm experiments concluded that the linear isotherm was the best fit for N2, and CH4 and the Sips isotherm was a better fit than the Langmuir and Freundlich isotherm for CO2. At 25ºC and 1 atm the zeolite capacity for CO2 is 4.3339 mmol/g, 0.1948 mmol/g for CH4, and 0.3534 mmol/g for N2. The zeolite has a higher CO2 capacity than the conventional NaX zeolite. Breakthrough experiments were performed in a fixed bed 22in, 0.5 in packing height and width at 1 atm and 298 K with nano-zeolite pellets. The gas chromatographer tested and recorded the data every two minutes with a flow rate of 10 cm3/min for N2 and 10 cm3/min CO2. Breakthrough simulations of the zeolite in a fixed bed adsorber column were conducted on MATLAB utilizing varying pressures, flow rates, and fed ratios of various CO2, N2 and CH4. Simulations using ideal adsorbed solution theory (IAST) calculations determined that the selectivity of CO2 in flue gas (15% CO2 + 85% N2) is 571.79 at 1 MPa, significantly higher than commercial zeolites and literature. The nanostructured faujasite zeolite appears to be a very promising adsorbent for CO2/N2 capture from flue gas and the separation of CO2/N2.
ContributorsClark, Krysta D. (Author) / Deng, Shuguang (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
155833-Thumbnail Image.png
Description
The aims of this project are to demonstrate the design and implementation of separations modalities for 1) in situ product recovery and 2) upstream pretreatment of toxic feedstocks. Many value-added bioproducts such as alcohols (ethanol and butanol) developed for the transportation sector are known to be integral to a sustainable

The aims of this project are to demonstrate the design and implementation of separations modalities for 1) in situ product recovery and 2) upstream pretreatment of toxic feedstocks. Many value-added bioproducts such as alcohols (ethanol and butanol) developed for the transportation sector are known to be integral to a sustainable future. Likewise, bioproduced aromatic building blocks for sustainable manufacturing such as phenol will be equally important. The production of these compounds is often limited by product toxicity at 2- 20 g/L, whereas it may desirable to produce 20-200 g/L for economically feasible scale up. While low-cost feedstocks are desirable for economical production, they contain highly cytotoxic value-added byproducts such as furfural. It is therefore desirable to design facile detoxification methods for lignocellulose-derived feedstocks to isolate and recover furfural preceding ethanol fermentation by Escherichia coli. Correspondingly it is desirable to design efficient facile in situ recovery modalities for bioalcohols and phenolic bioproducts. Accordingly, in-situ removal modalities were designed for simultaneous acetone, butanol, and ethanol recovery. Additionally, a furfural removal modality from lignocellulosic hydrolysates was designed for upstream pretreatment. Solid-liquid adsorption was found to serve well each of the recovery modalities characterized here. More hydrophobic compounds such as butanol and furfural are readily recovered from aqueous solutions via adsorption. The primary operational drawback to adsorption is adsorbent recovery and subsequent desorption of the product. Novel magnetically separable mesoporous carbon powders (MMCPs) were characterized and found to be rapidly separable from solutions at 91% recovery by mass. Thermal desorption of value added products was found efficient for recovery of butanol and furfural. Fufural was desorbed from the MMCPs up to 57% by mass with repeated adsorption/thermal desorption cycles. Butanol was recovered from MMCPs up to an average 93% by mass via thermal desorption. As another valuable renewable fermentation product, phenol was also collected via in-situ adsorption onto Dowex Optipore L-493 resin. Phenol recovery from the resins was efficiently accomplished with tert-butyl methyl ether up to 77% after 3 washes.
ContributorsStaggs, Kyle William (Author) / Nielsen, David R (Thesis advisor) / Lin, Jerry S (Committee member) / Torres, César I (Committee member) / Lind, Mary Laura (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2017
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
148174-Thumbnail Image.png
Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

ContributorsLaird, Ashlyn (Author) / Schoepf, Jared (Thesis director) / Westerhoff, Paul (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Using DFT calculations and GAMESS computational software, porphine and its derivatives were analyzed for unique sites to accept the adsorbates As(III), As(V) and P(V) in order to compare resulting adsorption energies and determine if any of these molecules prefer arsenic oxyanions over phosphate. Pure porphine preferred As(III) over P(V) with

Using DFT calculations and GAMESS computational software, porphine and its derivatives were analyzed for unique sites to accept the adsorbates As(III), As(V) and P(V) in order to compare resulting adsorption energies and determine if any of these molecules prefer arsenic oxyanions over phosphate. Pure porphine preferred As(III) over P(V) with a resulting adsorption energy of -0.7974 eV. Of the functionalized porphyrins tested, carboxyl porphyrin preferred As(V) over P(V) with a total adsorption energy of -0.7345 eV. Ethyl, methyl, chlorine and amino porphyrin all preferred As(III), with energies of -0.7934, -0.8239, -0.7602, and -0.8508 eV, respectively. Of the metalated porphyrins tested, copper and vanadium porphyrin preferred As(V) over P(V) with adsorption energies of -0.7645 and -2.0915 eV. Chromium, iron and magnesium porphyrin all preferred As(III) over P(V) with energies of -0.5993, -1.4539, and - 1.0790 eV, respectively.

ContributorsKusbel, Ashley (Author) / Muhich, Christopher (Thesis director) / Jin, Kailong (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05