Matching Items (6)
Filtering by

Clear all filters

137352-Thumbnail Image.png
Description
Climate change is one of the biggest challenges facing today's society.Since the late 19th century, the global average temperature has been rising. In order to minimize the temperature increase of the earth, it is necessary to develop alternative energy technologies that do not depend on fossil fuels. Solar fuels are

Climate change is one of the biggest challenges facing today's society.Since the late 19th century, the global average temperature has been rising. In order to minimize the temperature increase of the earth, it is necessary to develop alternative energy technologies that do not depend on fossil fuels. Solar fuels are one potential energy source for the future. Solar fuel technologies use catalysts to convert low energy molecules into fuels via artificial photosynthesis. TiO2, or titania, is an important model photocatalyst for studying these reactions. It is also important to use remaining fossil fuel resources efficiently and with the lowest possible greenhouse gas emissions. Fuel cells are electrochemical devices that aim to accomplish this goal and CeO2, or ceria, is an important material used in these devices. One way to observe the atomic structure of a material is with a transmission electron microscope (TEM). A traditional transmission electron microscope employs a beam of fast electrons to form atomic resolution images of a material. While imaging gives information about the positions of the atoms in the material, spectroscopy gives information about the composition and bonding of the material. A type of spectroscopy that can be performed inside the transmission electron microscope is electron energy loss spectroscopy (EELS), which provides a fundamental understanding of the electronic structure of a material. The energy loss spectrum also contains information on the chemical bonding in the material, and theoretical calculations that model the spectra are essential to correctly interpreting this bonding information. FEFF is a software that performs EELS calculations. Calculations of the oxygen K edges of TiO2 and CeO2 were made using FEFF in order to understand the changes that occur in the spectrum when oxygen vacancies are introduced as well as the changes near a grain boundary.
ContributorsHussaini, Zahra (Author) / Crozier, Peter (Thesis director) / Rez, Peter (Committee member) / Jorissen, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Materials Science and Engineering Program (Contributor) / Department of Physics (Contributor)
Created2013-12
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134338-Thumbnail Image.png
Description
A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the

A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the assumption of homogeneity typically used. While more data is needed to complete the model, current progress has identified several details about the system and its ideal modeling approach.
It is found that at the low pressures and flowrates of catalysis in ETEM, natural and forced convection are negligible forms of heat transfer. Up to 250 °C, radiation is also negligible. Gas conduction, being enhanced at low pressures, dominates.
Similarly, mass transport is dominated by diffusion, which is most accurately described by the Maxwell-Stefan model. Bulk fluid flow is highly laminar, and in fact borders the line between continuum and molecular flow. The no-slip boundary condition does not apply here, and both viscous slip and thermal creep must be considered. In the porous catalyst pellet considered in this work, Knudsen diffusion dominates, with bulk flow being best described by the Darcy-Brinkman equation.
With these physics modelled, it appears as though the gas homogeneity assumption is not completely accurate, breaking down in the porous pellet where reactions occur. While these results are not yet quantitative, this trend is likely to remain in future model iterations. It is not yet clear how significant this deviation is, though methods are proposed to minimize it if necessary.
Some model-experiment mismatch has been found which must be further explored. Experimental data shows a pressure dependence on the furnace temperature at constant power, a trend as-yet unresolvable by the model. It is proposed that this relates to the breakdown of the assumption of fluid continuity at low pressures and small dimensions, though no compelling mathematical formulation has been found. This issue may have significant ramifications on ETEM and ETEM experiment design.
ContributorsLangdon, Jayse Tanner (Author) / Crozier, Peter (Thesis director) / Hildreth, Owen (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154739-Thumbnail Image.png
Description
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance

Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined.

After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
ContributorsMiller, Benjamin (Author) / Crozier, Peter (Thesis advisor) / Liu, Jingyue (Committee member) / McCartney, Martha (Committee member) / Rez, Peter (Committee member) / Arizona State University (Publisher)
Created2016
154912-Thumbnail Image.png
Description
There is a fundamental attractiveness about harnessing renewable energy in an age when sustainability is an ethical norm. Lithium ion batteries and hydrogen fuels are considered the most promising energy source instead of fossil fuels. This work describes the investigation of new cathode materials and devices architectures for lithium ion

There is a fundamental attractiveness about harnessing renewable energy in an age when sustainability is an ethical norm. Lithium ion batteries and hydrogen fuels are considered the most promising energy source instead of fossil fuels. This work describes the investigation of new cathode materials and devices architectures for lithium ion batteries, and photocatalysts for their usage in water splitting and waste water treatment.

LiCoO2 and LiNi1/3Mn1/3Co1/3O2 were exfoliated into nanosheets using electrochemical oxidation followed by intercalation of tetraethylammonium cations. The nanosheets were purified using dialysis and electrophoresis. The nanosheets were successfully restacked into functional cathode materials with microwave hydrothermal assistance, indicating that new cathodes can be obtained by reassembling nanosheets. This method can pave the way for the synthesis of materials with novel structures and electrochemical properties, as well as facilitate the fabrication of hybrid and composite structures from different nanosheets as building blocks.

Paper folding techniques are used in order to compact a Li-ion battery and increase its energy per footprint area. Full cells were prepared using Li4Ti5O12 and LiCoO2 powders deposited onto current collectors consisting of paper coated with carbon nanotubes. Folded cells showed higher areal capacities compared to the planar versions. Origami lithium-ion battery made in this method that can be deformed at an unprecedented high level, including folding, bending and twisting.

Spray pyrolysis was used to prepare films of AgInS2 with and without Sn as an extrinsic dopant. The photoelectrochemical performance of these films was evaluated after annealing under a N2 or S atmosphere with different amounts of the Sn dopant. Density Function Theory (DFT) was used to calculate the band structure of AgInS2 and understand the role of Sn doping in the observed properties.

Cr(VI) removal was investigated using multiple oxide photocatalyst and additives. The efficiency for Cr(VI) removal using these photocatalysts was investigated in synthetic neutral and alkaline water, as well as in cooling tower blowdown water. While sulfite alone can chemically reduce Cr(VI), sulfite in combination with a photocatalyst resulted in faster and complete removal of Cr(VI) in 10 min using a SO32−/Cr(VI) ratio >35 in pH ∼ 8 solutions.
ContributorsCheng, Qian (Author) / Chan, Candace Kay (Thesis advisor) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016
154257-Thumbnail Image.png
Description
Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can

Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can be achieved through characterizations on transmission electron microscopy (TEM). Emphasis should be put on materials structure changes during the reactions in their “working conditions”. Environmental TEM with in situ light illumination system allows the photocatalysts to be studied under light irradiation when exposed to H2O vapor. A set of ex situ and in situ TEM characterizations are carried out on typical types of TiO2 based photocatalysts. The observed structure changes during the reaction are correlated with the H2 production rate for structure-property relationships.

A surface disordering was observed in situ when well-defined anatase TiO2 rhombohedral nanoparticles were exposed to 1 Torr H2O vapor and 10suns light inside the environmental TEM. The disordering is believed to be related to high density of hydroxyl groups formed on surface oxygen vacancies during water splitting reactions.

Pt co-catalyst on TiO2 is able to split pure water producing H2 and O2. The H2 production rate drops during the reaction. Particle size growth during reaction was discovered with Z-contrast images. The particle size growth is believed to be a photo-electro-chemical Ostwald ripening.

Characterizations were also carried out on a more complicated photocatalyst system: Ni/NiO core/shell co-catalyst on TiO2. A decrease of the H2 production rate resulting from photo-corrosion was observed. The Ni is believed to be oxidized to Ni2+ by OH• radicals which are intermediate products of H2O oxidation. The mechanism that the OH• radicals leak into the cores through cracks on NiO shells is more supported by experiments.

Overall this research has done a comprehensive ex situ and in situ TEM characterizations following some typical TiO2 based photocatalysts during reactions. This research has shown the technique availability to study photocatalyst inside TEM in photocatalytic conditions. It also demonstrates the importance to follow structure changes of materials during reactions in understanding deactivation mechanisms.
ContributorsZhang, Liuxian (Author) / Crozier, Peter (Thesis advisor) / Smith, David (Committee member) / Chan, Candace (Committee member) / Liu, Jingyue (Committee member) / Arizona State University (Publisher)
Created2015