Matching Items (2)
Filtering by

Clear all filters

136517-Thumbnail Image.png
Description
Adopting smart city tactics is important because it allows cities to develop sustainable communities through efficient policy initiatives. This study exemplifies how data analytics enables planners within smart cities to gain a better understanding of their population, and can make more informed choices based on these consumer choices. As a

Adopting smart city tactics is important because it allows cities to develop sustainable communities through efficient policy initiatives. This study exemplifies how data analytics enables planners within smart cities to gain a better understanding of their population, and can make more informed choices based on these consumer choices. As a rising share of the millennial generation enters the workforce, cities across the world are developing policy initiatives in the hopes of attracting these highly educated individuals. Due to this generation's strength in driving regional economic vitality directly and indirectly, it is in the best interests of city planners to understand the preferences of millennials so this information can be used to improve the attractiveness of communities for this high-purchasing power, productive segment of the population. Past research has revealed a tendency within this demographic to make location decisions based on the degree of ‘livability’ in an area. This degree represents a holistic approach at defining quality of life through the interconnectedness of both the built and social environments in cities.

Due to the importance of millennials to cities around the globe, this study uses 2010 ZIP code area data and the Phoenix metropolitan area as a case study to test the relationships between thirteen parameters of livability and the presence of millennials after controlling for other correlates of millennial preference.

The results of a multiple regression model indicated a positive linear association between livability parameters within smart cities and the presence of millennials. Therefore, the selected parameters of livability within smart cities are significant measures in influencing location decisions made by millennials. Urban planners can consequently increase the likelihood in which millennials will choose to live in a given area by improving livability across the parameters exemplified in this study. This mutually beneficial relationship provides added support to the notion that planners should develop solutions to improve livability within smart cities.
Created2015-05
156281-Thumbnail Image.png
Description
Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time.

Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish their battery reserves, using a contact charging point. This system is designed to work with all types of rechargeable batteries, focusing on Lithium Polymer (LiPo) packs, that incorporate a battery management system for increased reliability. The project also explores optimization methods for fleets of UAV systems, to increase charging efficiency and extend battery lifespans. Each component of this project was first designed and tested in computer simulation. Following positive feedback and results, prototypes for each part of this system were developed and rigorously tested. Results show that the contact charging method is able to charge LiPo batteries at a 1-C rate, which is the industry standard rate, maintaining the same safety and efficiency standards as modern day direct connection chargers. Control software for these base stations was also created, to be integrated with a fleet management system, and optimizes UAV charge levels and distribution to extend LiPo battery lifetimes while still meeting expected mission demand. Each component of this project (hardware/software) was designed for manufacturing and implementation using industry standard tools, making it ideal for large-scale implementations. This system has been successfully tested with a fleet of UAV systems at Arizona State University, and is currently being integrated into an Arizona smart city environment for deployment.
ContributorsMian, Sami (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Yang, Yezhou (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2018