Matching Items (3)
Filtering by

Clear all filters

153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
154349-Thumbnail Image.png
Description
In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems - in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) - whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers - machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers.

We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.
ContributorsKamyar, Reza (Author) / Peet, Matthew (Thesis advisor) / Berman, Spring (Committee member) / Rivera, Daniel (Committee member) / Artemiadis, Panagiotis (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2016
158221-Thumbnail Image.png
Description
The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling the system scale well with

The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling the system scale well with the number of agents. One scalable approach to characterizing the behavior of a multi-agent system is possible when the agents' states evolve over time according to a Markov process. In this case, the density of agents over space and time is governed by a set of difference or differential equations known as a {\it mean-field model}, whose parameters determine the stochastic control policies of the individual agents. These models often have the advantage of being easier to analyze than the individual agent dynamics. Mean-field models have been used to describe the behavior of chemical reaction networks, biological collectives such as social insect colonies, and more recently, swarms of robots that, like natural swarms, consist of hundreds or thousands of agents that are individually limited in capability but can coordinate to achieve a particular collective goal.

This dissertation presents a control-theoretic analysis of mean-field models for which the agent dynamics are governed by either a continuous-time Markov chain on an arbitrary state space, or a discrete-time Markov chain on a continuous state space. Three main problems are investigated. First, the problem of stabilization is addressed, that is, the design of transition probabilities/rates of the Markov process (the agent control parameters) that make a target distribution, satisfying certain conditions, invariant. Such a control approach could be used to achieve desired multi-agent distributions for spatial coverage and task allocation. However, the convergence of the multi-agent distribution to the designed equilibrium does not imply the convergence of the individual agents to fixed states. To prevent the agents from continuing to transition between states once the target distribution is reached, and thus potentially waste energy, the second problem addressed within this dissertation is the construction of feedback control laws that prevent agents from transitioning once the equilibrium distribution is reached. The third problem addressed is the computation of optimized transition probabilities/rates that maximize the speed at which the system converges to the target distribution.
ContributorsBiswal, Shiba (Author) / Berman, Spring (Thesis advisor) / Fainekos, Georgios (Committee member) / Lanchier, Nicolas (Committee member) / Mignolet, Marc (Committee member) / Peet, Matthew (Committee member) / Arizona State University (Publisher)
Created2020