Matching Items (3)
Filtering by

Clear all filters

151842-Thumbnail Image.png
Description
This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than

This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 (``The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely dominates and enhances the local star formation.
ContributorsKnierman, Karen A (Author) / Scowen, Paul (Thesis advisor) / Groppi, Christopher (Thesis advisor) / Mauskopf, Philip (Committee member) / Windhorst, Rogier (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2013
132911-Thumbnail Image.png
Description
I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665. Synchrotron emission traces magnetic field strength to a rough first

I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665. Synchrotron emission traces magnetic field strength to a rough first order, while Hα emission traces recent massive star formation. UGC 9665 was selected because it was included in the LOw Frequency ARray (LOFAR) TwoMetre Sky Survey (LoTSS; Shimwell et al. (2017)) as well as the Calar Alto Legacy Integral Field Area Survey (CALIFA; Sanchez et al. (2012)). I generated vertical intensity profiles at several distances along the disk from the galactic center for synchrotron emission and Hα in order to measure how the intensity of each falls off with distance from the midplane. In addition to correlating the vertical profiles to see if there is a relationship between star formation and magnetic field strength, I fit the LOFAR vertical profiles to characteristic Gaussian and exponential functions given by Dumke et al. (1995). Fitting these equations have been shown to be good indicators of the main mode of cosmic ray transport, whether it is advection (exponential fit) or diffusion (Gaussian fit) (Heesen et al. 2016). Cosmic rays originate from supernova,
and core collapse supernovae occur in star forming regions, which also produce
advective winds, so I test the correlation between star-forming regions and advective regions as predicted by the Heesen et al. (2016) method. Similar studies should be conducted on different galaxies in the future in order to further test these hypotheses and how well LOFAR and CALIFA complement each other, which will be made possible by the full release of the LOFAR Two-Metre Sky Survey (LoTSS) (Shimwell et al. 2017).
ContributorsHuckabee, Gabriela R (Author) / Jansen, Rolf (Thesis director) / Windhorst, Rogier (Committee member) / Bowman, Judd (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
155509-Thumbnail Image.png
Description
New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique

infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and

sensitivity

New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique

infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and

sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ).

The present sample, based on a single DAWN field, contains 116 Hα emission-

line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These

candidates have been selected through comparison of narrow and broad-band images

in the infrared and through matching with existing catalogs in the COSMOS field.

The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92

erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From

this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An

additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint

end slope and luminosity density that are derived are consistent with prior results at

similar redshifts, with reduced uncertainties.

An analysis of these Hα emitters’ sizes is also presented, showing a direct corre-

lation between the galaxies’ sizes and their Hα emission.
ContributorsGonzalez, Alicia (Author) / Rhoads, James E (Thesis advisor) / Malhotra, Sangeeta (Thesis advisor) / Butler, Nathaniel (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2017