Matching Items (791)
Filtering by

Clear all filters

ContributorsChang, Ruihong (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-29
149944-Thumbnail Image.png
Description
A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood nonlinear dependence of D/H on sample size, for which any

A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood nonlinear dependence of D/H on sample size, for which any accurate correction is difficult. This sample size effect been variously attributed to kinetic isotope fractionation within the mass spectrometer and peripheral instruments, ion source linearity issues, and an unstable H_3^+-factor or incorrect H_3^+-factor calculations. The cause of the sample size effect is here identified by examinations of individual chromatograms as well as bulk data from chromatographic peaks. It is here determined that it is primarily an artifact of the calculations employed by the manufacturer's computer program, used to both monitor the functions of the mass spectrometer and to collect data. Ancillary causes of the sample size effect include a combination of persistent background interferences and chromatographic separation of the isotopologues of molecular hydrogen. Previously published methods are evaluated in light of these findings. A new method of H_3^+-factor and D/H calculation is proposed which makes portions of the Isodat software as well as other published calculation methods unnecessary. Using this new method, D/H is measured in non-stoichiometric water in chert from the Cretaceous Edwards Group, Texas, as well as the Precambrian Kromberg Formation, South Africa, to assess hydrological conditions as well as to estimate the maximum average surface temperature during precipitation of the chert. Data from Cretaceous chert are consistent with previously published data and interpretations, based upon conventional analyses of large samples. Data from Precambrian chert are consistent with maximum average surface temperatures approaching 65°C during the Archean, instead of the much lower temperatures derived from erroneous methods of sample preparation and analysis. D/H is likewise measured in non-stoichiometric water in silicified basalt from the Precambrian Hooggenoeg Complex, South Africa. Data are shown to be consistent with D/H of the Archean ocean similar to present day values.
ContributorsSheehan, Michael Robert (Author) / Knauth, Leroy P (Thesis advisor) / Anbar, Ariel (Committee member) / Farmer, Jack (Committee member) / Arizona State University (Publisher)
Created2011
153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsASU Library. Music Library (Publisher)
Created2018-02-23
ContributorsWhite, Aaron (Performer) / Kim, Olga (Performer) / Hammond, Marinne (Performer) / Shaner, Hayden (Performer) / Yoo, Katie (Performer) / Shoemake, Crista (Performer) / Gebe, Vladimir, 1987- (Performer) / Wills, Grace (Performer) / McKinch, Riley (Performer) / Freshmen Four (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-27
ContributorsRosenfeld, Albor (Performer) / Pagano, Caio, 1940- (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-03
ContributorsASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsCao, Yuchen (Performer) / Chen, Sicong (Performer) / Soberano, Chino (Performer) / Nam, Michelle (Performer) / Collins, Clarice (Performer) / Witt, Juliana (Performer) / Liu, Jingting (Performer) / Chen, Neilson (Performer) / Zhang, Aihua (Performer) / Jiang, Zhou (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-25
132902-Thumbnail Image.png
Description
Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle

Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle to flow as it pertains to particulate processes and product design. This research is important in multiple industries such as pharmaceuticals and food processes.
ContributorsNugent, Emily Rose (Author) / Emady, Heather (Thesis director) / Marvi, Hamidreza (Committee member) / Materials Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133124-Thumbnail Image.png
Description
This thesis investigates the effects of differing diameters, removal of antistatic forces, and varying moisture content on the shear stress properties of granular glass beads through use of a Freeman FT4 Powder Rheometer. A yield locus results from plotting the experimental shear stress values (kPa) vs. the applied normal stress

This thesis investigates the effects of differing diameters, removal of antistatic forces, and varying moisture content on the shear stress properties of granular glass beads through use of a Freeman FT4 Powder Rheometer. A yield locus results from plotting the experimental shear stress values (kPa) vs. the applied normal stress value (kPa). From these yield loci, Mohr’s Circles are constructed to quantitatively describe flowability of tested materials in terms of a flow function parameter.

By testing 120-180 µm, 120-350 µm, 250-350 µm, and 430-600 µm dry glass bead ranges, an increase in diameter size is seen to result in both higher shear stress values and an increasing slope of plotted shear stress vs. applied normal stress. From constructed Mohr’s Circles, it is observed that flow function is quite high amongst tested dry materials, all yielding values above 20. A high flow function value (>10) is indicative of a good flow.1 Flow function was observed to increase with increasing diameter size until a slight drop was observed at the 430-600 µm range, possibly due to material quality or being near the size limitation of testing within the FT4, where materials must be less than 1000 µm in diameter.However, no trend could be observed in flowability as diameter size was increased.

Through the use of an antistatic solution, the effect of electrostatic forces generated by colliding particles was tested. No significant effect on the shear stress properties was observed.

Wet material testing occurred with the 120-180 µm glass bead range using a deionized water content of 0%, 1%, 5%, 15%, and 20% by mass. The results of such testing yielded an increase in shear stress values at applied normal stress values as moisture content is increased, as well as a decrease in the resulting flow function parameter. However, this trend changed as 20% moisture content was achieved; the wet material became a consistent paste, and a large drop in shear stress values occurred along with an increase in flowability.
ContributorsKleppe, Cameron Nicholas (Author) / Emady, Heather (Thesis director) / Vajrala, Spandana (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12