Matching Items (2)
Filtering by

Clear all filters

133854-Thumbnail Image.png
Description
The spread of urbanization leads to habitat fragmentation and deterioration and changes the composition of ecosystems for species all over the world. Different groups of organisms are impacted differently, and insects have experienced loss in diversity and abundance due to changing environmental factors. Here, I collected seed beetles across 12

The spread of urbanization leads to habitat fragmentation and deterioration and changes the composition of ecosystems for species all over the world. Different groups of organisms are impacted differently, and insects have experienced loss in diversity and abundance due to changing environmental factors. Here, I collected seed beetles across 12 urban and rural sites in Phoenix, Arizona, to analyze the effects of urbanization and habitat variation on beetle diversity and abundance. I found that urbanization, host tree origin, and environmental factors such as tree diversity and density had no impact on overall beetle diversity and abundance. Beetles were found to have higher density on hosts with a higher density of pods. In assessing individual beetle species, some beetles exhibited higher density in rural sites with native trees, and some were found more commonly on nonnative tree species. The observed differences in beetle density demonstrate the range of effects urbanization and environmental features can have on insect species. By studying ecosystem interactions alongside changing environments, we can better predict the role urbanization and human development can have on different organisms.
ContributorsPaduano, Gabrielle (Author) / Savalli, Udo (Thesis director) / Sweat, Ken (Committee member) / Division of Teacher Preparation (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
165863-Thumbnail Image.png
Description
Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of

Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of critical thermal limits of forensically-relevant insects is crucial, as their presence or absence could alter the overall postmortem interval (PMI) calculation. This study focuses on the larvae of Phormia regina (Meigen) (Diptera: Calliphoridae), a forensically relevant blow fly common across North America. Three populations were examined (Arizona, Colorado, and New Jersey), and five day old larvae were exposed to one of two temperatures, 39℃ or 45℃, for five hours. Across all colonies, the survival rate was lower at 45℃ than 39℃, in both larval and emerged adult stages. The Arizona colony experienced a harsher drop in survival rates at 45℃ than either the Colorado or New Jersey colonies. This research suggests that the range of 39℃ - 45℃ approaches the critical thermal limit for P. regina, but does not yet exhibit a near or complete failure of survivorship that a critical temperature would cause at this duration of time. However, there is opportunity for further studies to examine this critical temperature by investigating other temperatures within the 39℃ - 45℃ range and at longer durations of time in these temperatures.
ContributorsMcNeil, Tara (Author) / Weidner, Lauren (Thesis director) / Meeds, Andrew (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2022-05