Matching Items (2)
Filtering by

Clear all filters

168476-Thumbnail Image.png
Description
Differences in climatic conditions, aircraft traffic, and maintenance practices drive airfield pavements to perform differently. Through the Federal Aviation Administration’s (FAA’s) PAVEAIR online database and the National Oceanic and Atmospheric Administration’s (NOAA’s) online public platform, historical pavement condition and climate data from nearly 200 airfields in the dry freeze (DF),

Differences in climatic conditions, aircraft traffic, and maintenance practices drive airfield pavements to perform differently. Through the Federal Aviation Administration’s (FAA’s) PAVEAIR online database and the National Oceanic and Atmospheric Administration’s (NOAA’s) online public platform, historical pavement condition and climate data from nearly 200 airfields in the dry freeze (DF), dry no-freeze (DNF), wet freeze (WF), and wet no-freeze (WNF) climatic regions were collected to evaluate pavement performance and distress trends. This research details the methodologies employed in the PAVEAIR pavement inspection data retrieval and dataset organization, and further presents the results of a two-part analysis. First, rate of deterioration (ROD) of various pavement families were evaluated by fitting a linear regression to the pavement condition index (PCI). Then, historical distresses data were analyzed for various pavement families in the different climatic regions. Families were assigned with respect to climate, pavement structure (conventional asphalt or asphalt overlays), and branch type (apron, taxiway, and runway). The regression results showed that pavements in the WF region have the highest ROD, followed by the pavements in the DNF region. In terms of branch type, in three of four climatic regions, aprons have the fastest rate of deterioration, followed by taxiways and runways, respectively. The distress analytics revealed that cracking type of distresses were the most common in all the regions regardless of the pavement family. The results showed that climatic data alone were not adequate to characterize airfield pavement behavior due to the multivariate factors affecting pavement deterioration. An accurate pavement and distress prediction modeling effort should at least include additional information on the structure and traffic level.
ContributorsDuah, Ebenezer (Author) / Ozer, Hasan (Thesis advisor) / Kaloush, Kamil E (Committee member) / Mamlouk, Michael S (Committee member) / Arizona State University (Publisher)
Created2021
158782-Thumbnail Image.png
Description

United States Air Force airfield PAVER pavement management system enterprise data was reviewed for 67 networks. The distress survey extents and severity fields were joined with treatment costs estimated using RSMeans to determine the costliest distress. In asphalt surfaced pavements Longitudinal/transverse cracking, weathering, and block cracking resulted in the most

United States Air Force airfield PAVER pavement management system enterprise data was reviewed for 67 networks. The distress survey extents and severity fields were joined with treatment costs estimated using RSMeans to determine the costliest distress. In asphalt surfaced pavements Longitudinal/transverse cracking, weathering, and block cracking resulted in the most pavement condition index (PCI) deducts while the costliest distresses are weathering, block cracking and longitudinal cracking. In portland cement concrete surfaced pavements linear cracking, joint seal damage, and joint spalling resulted in the most PCI deducts while the costliest distresses are joint seal damage, linear cracking, and corner spalling. The results of this data were then compared to airfield attributes: Pavement Temperature Group, Dominant American Association of State Highway and Transportation Officials (AASHTO) Soil Classification, Pavement- Transportation Computer Assisted Structural Engineering (PCASE) Climate Zone, and years since last maintenance. Maps showing the Pavement Temperature Group, Dominant AASHTO Soil Classification, and PCASE Climate Zone are included in Appendix A. Alligator cracking is most prevalent at the airfields with PTG 64-34 (Ellsworth, Fairchild, Hill, and Offutt) and 58-22 (Niagara and Vandenberg). Rutting is most prevalent at PTG 64-34 (Ellsworth, Fairchild, Hill, and Offutt). An increasing trend of joint spalling, corner spalling, and corner break with decreasing soil quality (AASHOTO A-1 to A-8 soils). The PCASE Climate Zone Cost Indices the cost index for weathering is approximately double in the moist region over the dry region. The cost index for block cracking is approximately double in the cold region over the hot region. It is recommended that the agency review its pavement performance modeling in the pavement management system to increase the recommendation of pavement preservation treatments and review the use of higher quality materials for pavement maintenance treatments.

ContributorsThevenot, Ronald (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael S. (Thesis advisor) / Ozer, Hasan (Committee member) / Arizona State University (Publisher)
Created2020