Matching Items (4)
Filtering by

Clear all filters

136974-Thumbnail Image.png
Description
The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which demonstrates the potential for a refined product in its conventional

The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which demonstrates the potential for a refined product in its conventional interfacing, casing, size, safety, and aesthetics. If the potential for an excellent ionization-based loudspeaker product were realized, it would be highly profitable in its reasonable cost of production, novelty, and place in a large and fitting market.
ContributorsMagnotto, Niccolo John (Author) / Roedel, Ronald (Thesis director) / Huffman, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
132878-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsNossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132879-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three different methods of underwater communication were found, but only one, acoustics, was feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience.
ContributorsHocken, Chase (Co-author) / Nossaman, Grace (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132880-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsPadilla, Bryan (Co-author) / Nossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05